498 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			498 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/* mpihelp-mul.c  -  MPI helper functions
							 | 
						||
| 
								 | 
							
								 * Copyright (C) 1994, 1996, 1998, 1999,
							 | 
						||
| 
								 | 
							
								 *               2000 Free Software Foundation, Inc.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This file is part of GnuPG.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * GnuPG is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * GnuPG is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Note: This code is heavily based on the GNU MP Library.
							 | 
						||
| 
								 | 
							
								 *	 Actually it's the same code with only minor changes in the
							 | 
						||
| 
								 | 
							
								 *	 way the data is stored; this is to support the abstraction
							 | 
						||
| 
								 | 
							
								 *	 of an optional secure memory allocation which may be used
							 | 
						||
| 
								 | 
							
								 *	 to avoid revealing of sensitive data due to paging etc.
							 | 
						||
| 
								 | 
							
								 *	 The GNU MP Library itself is published under the LGPL;
							 | 
						||
| 
								 | 
							
								 *	 however I decided to publish this code under the plain GPL.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <linux/string.h>
							 | 
						||
| 
								 | 
							
								#include "mpi-internal.h"
							 | 
						||
| 
								 | 
							
								#include "longlong.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace)		\
							 | 
						||
| 
								 | 
							
									do {							\
							 | 
						||
| 
								 | 
							
										if ((size) < KARATSUBA_THRESHOLD)		\
							 | 
						||
| 
								 | 
							
											mul_n_basecase(prodp, up, vp, size);	\
							 | 
						||
| 
								 | 
							
										else						\
							 | 
						||
| 
								 | 
							
											mul_n(prodp, up, vp, size, tspace);	\
							 | 
						||
| 
								 | 
							
									} while (0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define MPN_SQR_N_RECURSE(prodp, up, size, tspace)		\
							 | 
						||
| 
								 | 
							
									do {							\
							 | 
						||
| 
								 | 
							
										if ((size) < KARATSUBA_THRESHOLD)		\
							 | 
						||
| 
								 | 
							
											mpih_sqr_n_basecase(prodp, up, size);	\
							 | 
						||
| 
								 | 
							
										else						\
							 | 
						||
| 
								 | 
							
											mpih_sqr_n(prodp, up, size, tspace);	\
							 | 
						||
| 
								 | 
							
									} while (0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
							 | 
						||
| 
								 | 
							
								 * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
							 | 
						||
| 
								 | 
							
								 * always stored.  Return the most significant limb.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Argument constraints:
							 | 
						||
| 
								 | 
							
								 * 1. PRODP != UP and PRODP != VP, i.e. the destination
							 | 
						||
| 
								 | 
							
								 *    must be distinct from the multiplier and the multiplicand.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Handle simple cases with traditional multiplication.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This is the most critical code of multiplication.  All multiplies rely
							 | 
						||
| 
								 | 
							
								 * on this, both small and huge.  Small ones arrive here immediately.  Huge
							 | 
						||
| 
								 | 
							
								 * ones arrive here as this is the base case for Karatsuba's recursive
							 | 
						||
| 
								 | 
							
								 * algorithm below.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static mpi_limb_t
							 | 
						||
| 
								 | 
							
								mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									mpi_size_t i;
							 | 
						||
| 
								 | 
							
									mpi_limb_t cy;
							 | 
						||
| 
								 | 
							
									mpi_limb_t v_limb;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/* Multiply by the first limb in V separately, as the result can be
							 | 
						||
| 
								 | 
							
									 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
							 | 
						||
| 
								 | 
							
									v_limb = vp[0];
							 | 
						||
| 
								 | 
							
									if (v_limb <= 1) {
							 | 
						||
| 
								 | 
							
										if (v_limb == 1)
							 | 
						||
| 
								 | 
							
											MPN_COPY(prodp, up, size);
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
											MPN_ZERO(prodp, size);
							 | 
						||
| 
								 | 
							
										cy = 0;
							 | 
						||
| 
								 | 
							
									} else
							 | 
						||
| 
								 | 
							
										cy = mpihelp_mul_1(prodp, up, size, v_limb);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									prodp[size] = cy;
							 | 
						||
| 
								 | 
							
									prodp++;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/* For each iteration in the outer loop, multiply one limb from
							 | 
						||
| 
								 | 
							
									 * U with one limb from V, and add it to PROD.  */
							 | 
						||
| 
								 | 
							
									for (i = 1; i < size; i++) {
							 | 
						||
| 
								 | 
							
										v_limb = vp[i];
							 | 
						||
| 
								 | 
							
										if (v_limb <= 1) {
							 | 
						||
| 
								 | 
							
											cy = 0;
							 | 
						||
| 
								 | 
							
											if (v_limb == 1)
							 | 
						||
| 
								 | 
							
												cy = mpihelp_add_n(prodp, prodp, up, size);
							 | 
						||
| 
								 | 
							
										} else
							 | 
						||
| 
								 | 
							
											cy = mpihelp_addmul_1(prodp, up, size, v_limb);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										prodp[size] = cy;
							 | 
						||
| 
								 | 
							
										prodp++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return cy;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void
							 | 
						||
| 
								 | 
							
								mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
							 | 
						||
| 
								 | 
							
										mpi_size_t size, mpi_ptr_t tspace)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (size & 1) {
							 | 
						||
| 
								 | 
							
										/* The size is odd, and the code below doesn't handle that.
							 | 
						||
| 
								 | 
							
										 * Multiply the least significant (size - 1) limbs with a recursive
							 | 
						||
| 
								 | 
							
										 * call, and handle the most significant limb of S1 and S2
							 | 
						||
| 
								 | 
							
										 * separately.
							 | 
						||
| 
								 | 
							
										 * A slightly faster way to do this would be to make the Karatsuba
							 | 
						||
| 
								 | 
							
										 * code below behave as if the size were even, and let it check for
							 | 
						||
| 
								 | 
							
										 * odd size in the end.  I.e., in essence move this code to the end.
							 | 
						||
| 
								 | 
							
										 * Doing so would save us a recursive call, and potentially make the
							 | 
						||
| 
								 | 
							
										 * stack grow a lot less.
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										mpi_size_t esize = size - 1;	/* even size */
							 | 
						||
| 
								 | 
							
										mpi_limb_t cy_limb;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace);
							 | 
						||
| 
								 | 
							
										cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]);
							 | 
						||
| 
								 | 
							
										prodp[esize + esize] = cy_limb;
							 | 
						||
| 
								 | 
							
										cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]);
							 | 
						||
| 
								 | 
							
										prodp[esize + size] = cy_limb;
							 | 
						||
| 
								 | 
							
									} else {
							 | 
						||
| 
								 | 
							
										/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
							 | 
						||
| 
								 | 
							
										 *
							 | 
						||
| 
								 | 
							
										 * Split U in two pieces, U1 and U0, such that
							 | 
						||
| 
								 | 
							
										 * U = U0 + U1*(B**n),
							 | 
						||
| 
								 | 
							
										 * and V in V1 and V0, such that
							 | 
						||
| 
								 | 
							
										 * V = V0 + V1*(B**n).
							 | 
						||
| 
								 | 
							
										 *
							 | 
						||
| 
								 | 
							
										 * UV is then computed recursively using the identity
							 | 
						||
| 
								 | 
							
										 *
							 | 
						||
| 
								 | 
							
										 *        2n   n          n                     n
							 | 
						||
| 
								 | 
							
										 * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
							 | 
						||
| 
								 | 
							
										 *                1 1        1  0   0  1              0 0
							 | 
						||
| 
								 | 
							
										 *
							 | 
						||
| 
								 | 
							
										 * Where B = 2**BITS_PER_MP_LIMB.
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										mpi_size_t hsize = size >> 1;
							 | 
						||
| 
								 | 
							
										mpi_limb_t cy;
							 | 
						||
| 
								 | 
							
										int negflg;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Product H.      ________________  ________________
							 | 
						||
| 
								 | 
							
										 *                |_____U1 x V1____||____U0 x V0_____|
							 | 
						||
| 
								 | 
							
										 * Put result in upper part of PROD and pass low part of TSPACE
							 | 
						||
| 
								 | 
							
										 * as new TSPACE.
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize,
							 | 
						||
| 
								 | 
							
												  tspace);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Product M.      ________________
							 | 
						||
| 
								 | 
							
										 *                |_(U1-U0)(V0-V1)_|
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										if (mpihelp_cmp(up + hsize, up, hsize) >= 0) {
							 | 
						||
| 
								 | 
							
											mpihelp_sub_n(prodp, up + hsize, up, hsize);
							 | 
						||
| 
								 | 
							
											negflg = 0;
							 | 
						||
| 
								 | 
							
										} else {
							 | 
						||
| 
								 | 
							
											mpihelp_sub_n(prodp, up, up + hsize, hsize);
							 | 
						||
| 
								 | 
							
											negflg = 1;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) {
							 | 
						||
| 
								 | 
							
											mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
							 | 
						||
| 
								 | 
							
											negflg ^= 1;
							 | 
						||
| 
								 | 
							
										} else {
							 | 
						||
| 
								 | 
							
											mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
							 | 
						||
| 
								 | 
							
											/* No change of NEGFLG.  */
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										/* Read temporary operands from low part of PROD.
							 | 
						||
| 
								 | 
							
										 * Put result in low part of TSPACE using upper part of TSPACE
							 | 
						||
| 
								 | 
							
										 * as new TSPACE.
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize,
							 | 
						||
| 
								 | 
							
												  tspace + size);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Add/copy product H. */
							 | 
						||
| 
								 | 
							
										MPN_COPY(prodp + hsize, prodp + size, hsize);
							 | 
						||
| 
								 | 
							
										cy = mpihelp_add_n(prodp + size, prodp + size,
							 | 
						||
| 
								 | 
							
												   prodp + size + hsize, hsize);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Add product M (if NEGFLG M is a negative number) */
							 | 
						||
| 
								 | 
							
										if (negflg)
							 | 
						||
| 
								 | 
							
											cy -=
							 | 
						||
| 
								 | 
							
											    mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace,
							 | 
						||
| 
								 | 
							
													  size);
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
											cy +=
							 | 
						||
| 
								 | 
							
											    mpihelp_add_n(prodp + hsize, prodp + hsize, tspace,
							 | 
						||
| 
								 | 
							
													  size);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Product L.      ________________  ________________
							 | 
						||
| 
								 | 
							
										 *                |________________||____U0 x V0_____|
							 | 
						||
| 
								 | 
							
										 * Read temporary operands from low part of PROD.
							 | 
						||
| 
								 | 
							
										 * Put result in low part of TSPACE using upper part of TSPACE
							 | 
						||
| 
								 | 
							
										 * as new TSPACE.
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Add/copy Product L (twice) */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
							 | 
						||
| 
								 | 
							
										if (cy)
							 | 
						||
| 
								 | 
							
											mpihelp_add_1(prodp + hsize + size,
							 | 
						||
| 
								 | 
							
												      prodp + hsize + size, hsize, cy);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										MPN_COPY(prodp, tspace, hsize);
							 | 
						||
| 
								 | 
							
										cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
							 | 
						||
| 
								 | 
							
												   hsize);
							 | 
						||
| 
								 | 
							
										if (cy)
							 | 
						||
| 
								 | 
							
											mpihelp_add_1(prodp + size, prodp + size, size, 1);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									mpi_size_t i;
							 | 
						||
| 
								 | 
							
									mpi_limb_t cy_limb;
							 | 
						||
| 
								 | 
							
									mpi_limb_t v_limb;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/* Multiply by the first limb in V separately, as the result can be
							 | 
						||
| 
								 | 
							
									 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
							 | 
						||
| 
								 | 
							
									v_limb = up[0];
							 | 
						||
| 
								 | 
							
									if (v_limb <= 1) {
							 | 
						||
| 
								 | 
							
										if (v_limb == 1)
							 | 
						||
| 
								 | 
							
											MPN_COPY(prodp, up, size);
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
											MPN_ZERO(prodp, size);
							 | 
						||
| 
								 | 
							
										cy_limb = 0;
							 | 
						||
| 
								 | 
							
									} else
							 | 
						||
| 
								 | 
							
										cy_limb = mpihelp_mul_1(prodp, up, size, v_limb);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									prodp[size] = cy_limb;
							 | 
						||
| 
								 | 
							
									prodp++;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/* For each iteration in the outer loop, multiply one limb from
							 | 
						||
| 
								 | 
							
									 * U with one limb from V, and add it to PROD.  */
							 | 
						||
| 
								 | 
							
									for (i = 1; i < size; i++) {
							 | 
						||
| 
								 | 
							
										v_limb = up[i];
							 | 
						||
| 
								 | 
							
										if (v_limb <= 1) {
							 | 
						||
| 
								 | 
							
											cy_limb = 0;
							 | 
						||
| 
								 | 
							
											if (v_limb == 1)
							 | 
						||
| 
								 | 
							
												cy_limb = mpihelp_add_n(prodp, prodp, up, size);
							 | 
						||
| 
								 | 
							
										} else
							 | 
						||
| 
								 | 
							
											cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										prodp[size] = cy_limb;
							 | 
						||
| 
								 | 
							
										prodp++;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void
							 | 
						||
| 
								 | 
							
								mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (size & 1) {
							 | 
						||
| 
								 | 
							
										/* The size is odd, and the code below doesn't handle that.
							 | 
						||
| 
								 | 
							
										 * Multiply the least significant (size - 1) limbs with a recursive
							 | 
						||
| 
								 | 
							
										 * call, and handle the most significant limb of S1 and S2
							 | 
						||
| 
								 | 
							
										 * separately.
							 | 
						||
| 
								 | 
							
										 * A slightly faster way to do this would be to make the Karatsuba
							 | 
						||
| 
								 | 
							
										 * code below behave as if the size were even, and let it check for
							 | 
						||
| 
								 | 
							
										 * odd size in the end.  I.e., in essence move this code to the end.
							 | 
						||
| 
								 | 
							
										 * Doing so would save us a recursive call, and potentially make the
							 | 
						||
| 
								 | 
							
										 * stack grow a lot less.
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										mpi_size_t esize = size - 1;	/* even size */
							 | 
						||
| 
								 | 
							
										mpi_limb_t cy_limb;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										MPN_SQR_N_RECURSE(prodp, up, esize, tspace);
							 | 
						||
| 
								 | 
							
										cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]);
							 | 
						||
| 
								 | 
							
										prodp[esize + esize] = cy_limb;
							 | 
						||
| 
								 | 
							
										cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										prodp[esize + size] = cy_limb;
							 | 
						||
| 
								 | 
							
									} else {
							 | 
						||
| 
								 | 
							
										mpi_size_t hsize = size >> 1;
							 | 
						||
| 
								 | 
							
										mpi_limb_t cy;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Product H.      ________________  ________________
							 | 
						||
| 
								 | 
							
										 *                |_____U1 x U1____||____U0 x U0_____|
							 | 
						||
| 
								 | 
							
										 * Put result in upper part of PROD and pass low part of TSPACE
							 | 
						||
| 
								 | 
							
										 * as new TSPACE.
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Product M.      ________________
							 | 
						||
| 
								 | 
							
										 *                |_(U1-U0)(U0-U1)_|
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										if (mpihelp_cmp(up + hsize, up, hsize) >= 0)
							 | 
						||
| 
								 | 
							
											mpihelp_sub_n(prodp, up + hsize, up, hsize);
							 | 
						||
| 
								 | 
							
										else
							 | 
						||
| 
								 | 
							
											mpihelp_sub_n(prodp, up, up + hsize, hsize);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Read temporary operands from low part of PROD.
							 | 
						||
| 
								 | 
							
										 * Put result in low part of TSPACE using upper part of TSPACE
							 | 
						||
| 
								 | 
							
										 * as new TSPACE.  */
							 | 
						||
| 
								 | 
							
										MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Add/copy product H  */
							 | 
						||
| 
								 | 
							
										MPN_COPY(prodp + hsize, prodp + size, hsize);
							 | 
						||
| 
								 | 
							
										cy = mpihelp_add_n(prodp + size, prodp + size,
							 | 
						||
| 
								 | 
							
												   prodp + size + hsize, hsize);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Add product M (if NEGFLG M is a negative number).  */
							 | 
						||
| 
								 | 
							
										cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Product L.      ________________  ________________
							 | 
						||
| 
								 | 
							
										 *                |________________||____U0 x U0_____|
							 | 
						||
| 
								 | 
							
										 * Read temporary operands from low part of PROD.
							 | 
						||
| 
								 | 
							
										 * Put result in low part of TSPACE using upper part of TSPACE
							 | 
						||
| 
								 | 
							
										 * as new TSPACE.  */
							 | 
						||
| 
								 | 
							
										MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Add/copy Product L (twice).  */
							 | 
						||
| 
								 | 
							
										cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
							 | 
						||
| 
								 | 
							
										if (cy)
							 | 
						||
| 
								 | 
							
											mpihelp_add_1(prodp + hsize + size,
							 | 
						||
| 
								 | 
							
												      prodp + hsize + size, hsize, cy);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										MPN_COPY(prodp, tspace, hsize);
							 | 
						||
| 
								 | 
							
										cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
							 | 
						||
| 
								 | 
							
												   hsize);
							 | 
						||
| 
								 | 
							
										if (cy)
							 | 
						||
| 
								 | 
							
											mpihelp_add_1(prodp + size, prodp + size, size, 1);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int
							 | 
						||
| 
								 | 
							
								mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
							 | 
						||
| 
								 | 
							
											   mpi_ptr_t up, mpi_size_t usize,
							 | 
						||
| 
								 | 
							
											   mpi_ptr_t vp, mpi_size_t vsize,
							 | 
						||
| 
								 | 
							
											   struct karatsuba_ctx *ctx)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									mpi_limb_t cy;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (!ctx->tspace || ctx->tspace_size < vsize) {
							 | 
						||
| 
								 | 
							
										if (ctx->tspace)
							 | 
						||
| 
								 | 
							
											mpi_free_limb_space(ctx->tspace);
							 | 
						||
| 
								 | 
							
										ctx->tspace = mpi_alloc_limb_space(2 * vsize);
							 | 
						||
| 
								 | 
							
										if (!ctx->tspace)
							 | 
						||
| 
								 | 
							
											return -ENOMEM;
							 | 
						||
| 
								 | 
							
										ctx->tspace_size = vsize;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									prodp += vsize;
							 | 
						||
| 
								 | 
							
									up += vsize;
							 | 
						||
| 
								 | 
							
									usize -= vsize;
							 | 
						||
| 
								 | 
							
									if (usize >= vsize) {
							 | 
						||
| 
								 | 
							
										if (!ctx->tp || ctx->tp_size < vsize) {
							 | 
						||
| 
								 | 
							
											if (ctx->tp)
							 | 
						||
| 
								 | 
							
												mpi_free_limb_space(ctx->tp);
							 | 
						||
| 
								 | 
							
											ctx->tp = mpi_alloc_limb_space(2 * vsize);
							 | 
						||
| 
								 | 
							
											if (!ctx->tp) {
							 | 
						||
| 
								 | 
							
												if (ctx->tspace)
							 | 
						||
| 
								 | 
							
													mpi_free_limb_space(ctx->tspace);
							 | 
						||
| 
								 | 
							
												ctx->tspace = NULL;
							 | 
						||
| 
								 | 
							
												return -ENOMEM;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											ctx->tp_size = vsize;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										do {
							 | 
						||
| 
								 | 
							
											MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace);
							 | 
						||
| 
								 | 
							
											cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize);
							 | 
						||
| 
								 | 
							
											mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize,
							 | 
						||
| 
								 | 
							
												      cy);
							 | 
						||
| 
								 | 
							
											prodp += vsize;
							 | 
						||
| 
								 | 
							
											up += vsize;
							 | 
						||
| 
								 | 
							
											usize -= vsize;
							 | 
						||
| 
								 | 
							
										} while (usize >= vsize);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (usize) {
							 | 
						||
| 
								 | 
							
										if (usize < KARATSUBA_THRESHOLD) {
							 | 
						||
| 
								 | 
							
											mpi_limb_t tmp;
							 | 
						||
| 
								 | 
							
											if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp)
							 | 
						||
| 
								 | 
							
											    < 0)
							 | 
						||
| 
								 | 
							
												return -ENOMEM;
							 | 
						||
| 
								 | 
							
										} else {
							 | 
						||
| 
								 | 
							
											if (!ctx->next) {
							 | 
						||
| 
								 | 
							
												ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL);
							 | 
						||
| 
								 | 
							
												if (!ctx->next)
							 | 
						||
| 
								 | 
							
													return -ENOMEM;
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if (mpihelp_mul_karatsuba_case(ctx->tspace,
							 | 
						||
| 
								 | 
							
														       vp, vsize,
							 | 
						||
| 
								 | 
							
														       up, usize,
							 | 
						||
| 
								 | 
							
														       ctx->next) < 0)
							 | 
						||
| 
								 | 
							
												return -ENOMEM;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize);
							 | 
						||
| 
								 | 
							
										mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									struct karatsuba_ctx *ctx2;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (ctx->tp)
							 | 
						||
| 
								 | 
							
										mpi_free_limb_space(ctx->tp);
							 | 
						||
| 
								 | 
							
									if (ctx->tspace)
							 | 
						||
| 
								 | 
							
										mpi_free_limb_space(ctx->tspace);
							 | 
						||
| 
								 | 
							
									for (ctx = ctx->next; ctx; ctx = ctx2) {
							 | 
						||
| 
								 | 
							
										ctx2 = ctx->next;
							 | 
						||
| 
								 | 
							
										if (ctx->tp)
							 | 
						||
| 
								 | 
							
											mpi_free_limb_space(ctx->tp);
							 | 
						||
| 
								 | 
							
										if (ctx->tspace)
							 | 
						||
| 
								 | 
							
											mpi_free_limb_space(ctx->tspace);
							 | 
						||
| 
								 | 
							
										kfree(ctx);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
							 | 
						||
| 
								 | 
							
								 * and v (pointed to by VP, with VSIZE limbs), and store the result at
							 | 
						||
| 
								 | 
							
								 * PRODP.  USIZE + VSIZE limbs are always stored, but if the input
							 | 
						||
| 
								 | 
							
								 * operands are normalized.  Return the most significant limb of the
							 | 
						||
| 
								 | 
							
								 * result.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * NOTE: The space pointed to by PRODP is overwritten before finished
							 | 
						||
| 
								 | 
							
								 * with U and V, so overlap is an error.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Argument constraints:
							 | 
						||
| 
								 | 
							
								 * 1. USIZE >= VSIZE.
							 | 
						||
| 
								 | 
							
								 * 2. PRODP != UP and PRODP != VP, i.e. the destination
							 | 
						||
| 
								 | 
							
								 *    must be distinct from the multiplier and the multiplicand.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int
							 | 
						||
| 
								 | 
							
								mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
							 | 
						||
| 
								 | 
							
									    mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
							 | 
						||
| 
								 | 
							
									mpi_limb_t cy;
							 | 
						||
| 
								 | 
							
									struct karatsuba_ctx ctx;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (vsize < KARATSUBA_THRESHOLD) {
							 | 
						||
| 
								 | 
							
										mpi_size_t i;
							 | 
						||
| 
								 | 
							
										mpi_limb_t v_limb;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										if (!vsize) {
							 | 
						||
| 
								 | 
							
											*_result = 0;
							 | 
						||
| 
								 | 
							
											return 0;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* Multiply by the first limb in V separately, as the result can be
							 | 
						||
| 
								 | 
							
										 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
							 | 
						||
| 
								 | 
							
										v_limb = vp[0];
							 | 
						||
| 
								 | 
							
										if (v_limb <= 1) {
							 | 
						||
| 
								 | 
							
											if (v_limb == 1)
							 | 
						||
| 
								 | 
							
												MPN_COPY(prodp, up, usize);
							 | 
						||
| 
								 | 
							
											else
							 | 
						||
| 
								 | 
							
												MPN_ZERO(prodp, usize);
							 | 
						||
| 
								 | 
							
											cy = 0;
							 | 
						||
| 
								 | 
							
										} else
							 | 
						||
| 
								 | 
							
											cy = mpihelp_mul_1(prodp, up, usize, v_limb);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										prodp[usize] = cy;
							 | 
						||
| 
								 | 
							
										prodp++;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/* For each iteration in the outer loop, multiply one limb from
							 | 
						||
| 
								 | 
							
										 * U with one limb from V, and add it to PROD.  */
							 | 
						||
| 
								 | 
							
										for (i = 1; i < vsize; i++) {
							 | 
						||
| 
								 | 
							
											v_limb = vp[i];
							 | 
						||
| 
								 | 
							
											if (v_limb <= 1) {
							 | 
						||
| 
								 | 
							
												cy = 0;
							 | 
						||
| 
								 | 
							
												if (v_limb == 1)
							 | 
						||
| 
								 | 
							
													cy = mpihelp_add_n(prodp, prodp, up,
							 | 
						||
| 
								 | 
							
															   usize);
							 | 
						||
| 
								 | 
							
											} else
							 | 
						||
| 
								 | 
							
												cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
											prodp[usize] = cy;
							 | 
						||
| 
								 | 
							
											prodp++;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										*_result = cy;
							 | 
						||
| 
								 | 
							
										return 0;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									memset(&ctx, 0, sizeof ctx);
							 | 
						||
| 
								 | 
							
									if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0)
							 | 
						||
| 
								 | 
							
										return -ENOMEM;
							 | 
						||
| 
								 | 
							
									mpihelp_release_karatsuba_ctx(&ctx);
							 | 
						||
| 
								 | 
							
									*_result = *prod_endp;
							 | 
						||
| 
								 | 
							
									return 0;
							 | 
						||
| 
								 | 
							
								}
							 |