599 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			599 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  *  Device State Control Registers driver | ||
|  |  * | ||
|  |  *  Copyright (C) 2011 Texas Instruments Incorporated | ||
|  |  *  Author: Mark Salter <msalter@redhat.com> | ||
|  |  * | ||
|  |  *  This program is free software; you can redistribute it and/or modify | ||
|  |  *  it under the terms of the GNU General Public License version 2 as | ||
|  |  *  published by the Free Software Foundation. | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * The Device State Control Registers (DSCR) provide SoC level control over | ||
|  |  * a number of peripherals. Details vary considerably among the various SoC | ||
|  |  * parts. In general, the DSCR block will provide one or more configuration | ||
|  |  * registers often protected by a lock register. One or more key values must | ||
|  |  * be written to a lock register in order to unlock the configuration register. | ||
|  |  * The configuration register may be used to enable (and disable in some | ||
|  |  * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc. | ||
|  |  * In some cases, a configuration register is write once or the individual | ||
|  |  * bits are write once. That is, you may be able to enable a device, but | ||
|  |  * will not be able to disable it. | ||
|  |  * | ||
|  |  * In addition to device configuration, the DSCR block may provide registers | ||
|  |  * which are used to reset SoC peripherals, provide device ID information, | ||
|  |  * provide MAC addresses, and other miscellaneous functions. | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <linux/of.h>
 | ||
|  | #include <linux/of_address.h>
 | ||
|  | #include <linux/of_platform.h>
 | ||
|  | #include <linux/module.h>
 | ||
|  | #include <linux/io.h>
 | ||
|  | #include <linux/delay.h>
 | ||
|  | #include <asm/soc.h>
 | ||
|  | #include <asm/dscr.h>
 | ||
|  | 
 | ||
|  | #define MAX_DEVSTATE_IDS   32
 | ||
|  | #define MAX_DEVCTL_REGS     8
 | ||
|  | #define MAX_DEVSTAT_REGS    8
 | ||
|  | #define MAX_LOCKED_REGS     4
 | ||
|  | #define MAX_SOC_EMACS       2
 | ||
|  | 
 | ||
|  | struct rmii_reset_reg { | ||
|  | 	u32 reg; | ||
|  | 	u32 mask; | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Some registerd may be locked. In order to write to these | ||
|  |  * registers, the key value must first be written to the lockreg. | ||
|  |  */ | ||
|  | struct locked_reg { | ||
|  | 	u32 reg;	/* offset from base */ | ||
|  | 	u32 lockreg;	/* offset from base */ | ||
|  | 	u32 key;	/* unlock key */ | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This describes a contiguous area of like control bits used to enable/disable | ||
|  |  * SoC devices. Each controllable device is given an ID which is used by the | ||
|  |  * individual device drivers to control the device state. These IDs start at | ||
|  |  * zero and are assigned sequentially to the control bitfield ranges described | ||
|  |  * by this structure. | ||
|  |  */ | ||
|  | struct devstate_ctl_reg { | ||
|  | 	u32 reg;		/* register holding the control bits */ | ||
|  | 	u8  start_id;		/* start id of this range */ | ||
|  | 	u8  num_ids;		/* number of devices in this range */ | ||
|  | 	u8  enable_only;	/* bits are write-once to enable only */ | ||
|  | 	u8  enable;		/* value used to enable device */ | ||
|  | 	u8  disable;		/* value used to disable device */ | ||
|  | 	u8  shift;		/* starting (rightmost) bit in range */ | ||
|  | 	u8  nbits;		/* number of bits per device */ | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This describes a region of status bits indicating the state of | ||
|  |  * various devices. This is used internally to wait for status | ||
|  |  * change completion when enabling/disabling a device. Status is | ||
|  |  * optional and not all device controls will have a corresponding | ||
|  |  * status. | ||
|  |  */ | ||
|  | struct devstate_stat_reg { | ||
|  | 	u32 reg;		/* register holding the status bits */ | ||
|  | 	u8  start_id;		/* start id of this range */ | ||
|  | 	u8  num_ids;		/* number of devices in this range */ | ||
|  | 	u8  enable;		/* value indicating enabled state */ | ||
|  | 	u8  disable;		/* value indicating disabled state */ | ||
|  | 	u8  shift;		/* starting (rightmost) bit in range */ | ||
|  | 	u8  nbits;		/* number of bits per device */ | ||
|  | }; | ||
|  | 
 | ||
|  | struct devstate_info { | ||
|  | 	struct devstate_ctl_reg *ctl; | ||
|  | 	struct devstate_stat_reg *stat; | ||
|  | }; | ||
|  | 
 | ||
|  | /* These are callbacks to SOC-specific code. */ | ||
|  | struct dscr_ops { | ||
|  | 	void (*init)(struct device_node *node); | ||
|  | }; | ||
|  | 
 | ||
|  | struct dscr_regs { | ||
|  | 	spinlock_t		lock; | ||
|  | 	void __iomem		*base; | ||
|  | 	u32			kick_reg[2]; | ||
|  | 	u32			kick_key[2]; | ||
|  | 	struct locked_reg	locked[MAX_LOCKED_REGS]; | ||
|  | 	struct devstate_info	devstate_info[MAX_DEVSTATE_IDS]; | ||
|  | 	struct rmii_reset_reg   rmii_resets[MAX_SOC_EMACS]; | ||
|  | 	struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS]; | ||
|  | 	struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS]; | ||
|  | }; | ||
|  | 
 | ||
|  | static struct dscr_regs	dscr; | ||
|  | 
 | ||
|  | static struct locked_reg *find_locked_reg(u32 reg) | ||
|  | { | ||
|  | 	int i; | ||
|  | 
 | ||
|  | 	for (i = 0; i < MAX_LOCKED_REGS; i++) | ||
|  | 		if (dscr.locked[i].key && reg == dscr.locked[i].reg) | ||
|  | 			return &dscr.locked[i]; | ||
|  | 	return NULL; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Write to a register with one lock | ||
|  |  */ | ||
|  | static void dscr_write_locked1(u32 reg, u32 val, | ||
|  | 			       u32 lock, u32 key) | ||
|  | { | ||
|  | 	void __iomem *reg_addr = dscr.base + reg; | ||
|  | 	void __iomem *lock_addr = dscr.base + lock; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * For some registers, the lock is relocked after a short number | ||
|  | 	 * of cycles. We have to put the lock write and register write in | ||
|  | 	 * the same fetch packet to meet this timing. The .align ensures | ||
|  | 	 * the two stw instructions are in the same fetch packet. | ||
|  | 	 */ | ||
|  | 	asm volatile ("b	.s2	0f\n" | ||
|  | 		      "nop	5\n" | ||
|  | 		      "    .align 5\n" | ||
|  | 		      "0:\n" | ||
|  | 		      "stw	.D1T2	%3,*%2\n" | ||
|  | 		      "stw	.D1T2	%1,*%0\n" | ||
|  | 		      : | ||
|  | 		      : "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key) | ||
|  | 		); | ||
|  | 
 | ||
|  | 	/* in case the hw doesn't reset the lock */ | ||
|  | 	soc_writel(0, lock_addr); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Write to a register protected by two lock registers | ||
|  |  */ | ||
|  | static void dscr_write_locked2(u32 reg, u32 val, | ||
|  | 			       u32 lock0, u32 key0, | ||
|  | 			       u32 lock1, u32 key1) | ||
|  | { | ||
|  | 	soc_writel(key0, dscr.base + lock0); | ||
|  | 	soc_writel(key1, dscr.base + lock1); | ||
|  | 	soc_writel(val, dscr.base + reg); | ||
|  | 	soc_writel(0, dscr.base + lock0); | ||
|  | 	soc_writel(0, dscr.base + lock1); | ||
|  | } | ||
|  | 
 | ||
|  | static void dscr_write(u32 reg, u32 val) | ||
|  | { | ||
|  | 	struct locked_reg *lock; | ||
|  | 
 | ||
|  | 	lock = find_locked_reg(reg); | ||
|  | 	if (lock) | ||
|  | 		dscr_write_locked1(reg, val, lock->lockreg, lock->key); | ||
|  | 	else if (dscr.kick_key[0]) | ||
|  | 		dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0], | ||
|  | 				   dscr.kick_reg[1], dscr.kick_key[1]); | ||
|  | 	else | ||
|  | 		soc_writel(val, dscr.base + reg); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Drivers can use this interface to enable/disable SoC IP blocks. | ||
|  |  */ | ||
|  | void dscr_set_devstate(int id, enum dscr_devstate_t state) | ||
|  | { | ||
|  | 	struct devstate_ctl_reg *ctl; | ||
|  | 	struct devstate_stat_reg *stat; | ||
|  | 	struct devstate_info *info; | ||
|  | 	u32 ctl_val, val; | ||
|  | 	int ctl_shift, ctl_mask; | ||
|  | 	unsigned long flags; | ||
|  | 
 | ||
|  | 	if (!dscr.base) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	if (id < 0 || id >= MAX_DEVSTATE_IDS) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	info = &dscr.devstate_info[id]; | ||
|  | 	ctl = info->ctl; | ||
|  | 	stat = info->stat; | ||
|  | 
 | ||
|  | 	if (ctl == NULL) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id); | ||
|  | 	ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift; | ||
|  | 
 | ||
|  | 	switch (state) { | ||
|  | 	case DSCR_DEVSTATE_ENABLED: | ||
|  | 		ctl_val = ctl->enable << ctl_shift; | ||
|  | 		break; | ||
|  | 	case DSCR_DEVSTATE_DISABLED: | ||
|  | 		if (ctl->enable_only) | ||
|  | 			return; | ||
|  | 		ctl_val = ctl->disable << ctl_shift; | ||
|  | 		break; | ||
|  | 	default: | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	spin_lock_irqsave(&dscr.lock, flags); | ||
|  | 
 | ||
|  | 	val = soc_readl(dscr.base + ctl->reg); | ||
|  | 	val &= ~ctl_mask; | ||
|  | 	val |= ctl_val; | ||
|  | 
 | ||
|  | 	dscr_write(ctl->reg, val); | ||
|  | 
 | ||
|  | 	spin_unlock_irqrestore(&dscr.lock, flags); | ||
|  | 
 | ||
|  | 	if (!stat) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	ctl_shift = stat->shift + stat->nbits * (id - stat->start_id); | ||
|  | 
 | ||
|  | 	if (state == DSCR_DEVSTATE_ENABLED) | ||
|  | 		ctl_val = stat->enable; | ||
|  | 	else | ||
|  | 		ctl_val = stat->disable; | ||
|  | 
 | ||
|  | 	do { | ||
|  | 		val = soc_readl(dscr.base + stat->reg); | ||
|  | 		val >>= ctl_shift; | ||
|  | 		val &= ((1 << stat->nbits) - 1); | ||
|  | 	} while (val != ctl_val); | ||
|  | } | ||
|  | EXPORT_SYMBOL(dscr_set_devstate); | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Drivers can use this to reset RMII module. | ||
|  |  */ | ||
|  | void dscr_rmii_reset(int id, int assert) | ||
|  | { | ||
|  | 	struct rmii_reset_reg *r; | ||
|  | 	unsigned long flags; | ||
|  | 	u32 val; | ||
|  | 
 | ||
|  | 	if (id < 0 || id >= MAX_SOC_EMACS) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	r = &dscr.rmii_resets[id]; | ||
|  | 	if (r->mask == 0) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	spin_lock_irqsave(&dscr.lock, flags); | ||
|  | 
 | ||
|  | 	val = soc_readl(dscr.base + r->reg); | ||
|  | 	if (assert) | ||
|  | 		dscr_write(r->reg, val | r->mask); | ||
|  | 	else | ||
|  | 		dscr_write(r->reg, val & ~(r->mask)); | ||
|  | 
 | ||
|  | 	spin_unlock_irqrestore(&dscr.lock, flags); | ||
|  | } | ||
|  | EXPORT_SYMBOL(dscr_rmii_reset); | ||
|  | 
 | ||
|  | static void __init dscr_parse_devstat(struct device_node *node, | ||
|  | 				      void __iomem *base) | ||
|  | { | ||
|  | 	u32 val; | ||
|  | 	int err; | ||
|  | 
 | ||
|  | 	err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1); | ||
|  | 	if (!err) | ||
|  | 		c6x_devstat = soc_readl(base + val); | ||
|  | 	printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat); | ||
|  | } | ||
|  | 
 | ||
|  | static void __init dscr_parse_silicon_rev(struct device_node *node, | ||
|  | 					 void __iomem *base) | ||
|  | { | ||
|  | 	u32 vals[3]; | ||
|  | 	int err; | ||
|  | 
 | ||
|  | 	err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3); | ||
|  | 	if (!err) { | ||
|  | 		c6x_silicon_rev = soc_readl(base + vals[0]); | ||
|  | 		c6x_silicon_rev >>= vals[1]; | ||
|  | 		c6x_silicon_rev &= vals[2]; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Some SoCs will have a pair of fuse registers which hold | ||
|  |  * an ethernet MAC address. The "ti,dscr-mac-fuse-regs" | ||
|  |  * property is a mapping from fuse register bytes to MAC | ||
|  |  * address bytes. The expected format is: | ||
|  |  * | ||
|  |  *	ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0 | ||
|  |  *				 reg1 b3 b2 b1 b0> | ||
|  |  * | ||
|  |  * reg0 and reg1 are the offsets of the two fuse registers. | ||
|  |  * b3-b0 positionally represent bytes within the fuse register. | ||
|  |  * b3 is the most significant byte and b0 is the least. | ||
|  |  * Allowable values for b3-b0 are: | ||
|  |  * | ||
|  |  *	  0 = fuse register byte not used in MAC address | ||
|  |  *      1-6 = index+1 into c6x_fuse_mac[] | ||
|  |  */ | ||
|  | static void __init dscr_parse_mac_fuse(struct device_node *node, | ||
|  | 				       void __iomem *base) | ||
|  | { | ||
|  | 	u32 vals[10], fuse; | ||
|  | 	int f, i, j, err; | ||
|  | 
 | ||
|  | 	err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs", | ||
|  | 					 vals, 10); | ||
|  | 	if (err) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	for (f = 0; f < 2; f++) { | ||
|  | 		fuse = soc_readl(base + vals[f * 5]); | ||
|  | 		for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++) | ||
|  | 			if (vals[j] && vals[j] <= 6) | ||
|  | 				c6x_fuse_mac[vals[j] - 1] = fuse >> i; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | static void __init dscr_parse_rmii_resets(struct device_node *node, | ||
|  | 					  void __iomem *base) | ||
|  | { | ||
|  | 	const __be32 *p; | ||
|  | 	int i, size; | ||
|  | 
 | ||
|  | 	/* look for RMII reset registers */ | ||
|  | 	p = of_get_property(node, "ti,dscr-rmii-resets", &size); | ||
|  | 	if (p) { | ||
|  | 		/* parse all the reg/mask pairs we can handle */ | ||
|  | 		size /= (sizeof(*p) * 2); | ||
|  | 		if (size > MAX_SOC_EMACS) | ||
|  | 			size = MAX_SOC_EMACS; | ||
|  | 
 | ||
|  | 		for (i = 0; i < size; i++) { | ||
|  | 			dscr.rmii_resets[i].reg = be32_to_cpup(p++); | ||
|  | 			dscr.rmii_resets[i].mask = be32_to_cpup(p++); | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void __init dscr_parse_privperm(struct device_node *node, | ||
|  | 				       void __iomem *base) | ||
|  | { | ||
|  | 	u32 vals[2]; | ||
|  | 	int err; | ||
|  | 
 | ||
|  | 	err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2); | ||
|  | 	if (err) | ||
|  | 		return; | ||
|  | 	dscr_write(vals[0], vals[1]); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * SoCs may have "locked" DSCR registers which can only be written | ||
|  |  * to only after writing a key value to a lock registers. These | ||
|  |  * regisers can be described with the "ti,dscr-locked-regs" property. | ||
|  |  * This property provides a list of register descriptions with each | ||
|  |  * description consisting of three values. | ||
|  |  * | ||
|  |  *	ti,dscr-locked-regs = <reg0 lockreg0 key0 | ||
|  |  *                               ... | ||
|  |  *                             regN lockregN keyN>; | ||
|  |  * | ||
|  |  * reg is the offset of the locked register | ||
|  |  * lockreg is the offset of the lock register | ||
|  |  * key is the unlock key written to lockreg | ||
|  |  * | ||
|  |  */ | ||
|  | static void __init dscr_parse_locked_regs(struct device_node *node, | ||
|  | 					  void __iomem *base) | ||
|  | { | ||
|  | 	struct locked_reg *r; | ||
|  | 	const __be32 *p; | ||
|  | 	int i, size; | ||
|  | 
 | ||
|  | 	p = of_get_property(node, "ti,dscr-locked-regs", &size); | ||
|  | 	if (p) { | ||
|  | 		/* parse all the register descriptions we can handle */ | ||
|  | 		size /= (sizeof(*p) * 3); | ||
|  | 		if (size > MAX_LOCKED_REGS) | ||
|  | 			size = MAX_LOCKED_REGS; | ||
|  | 
 | ||
|  | 		for (i = 0; i < size; i++) { | ||
|  | 			r = &dscr.locked[i]; | ||
|  | 
 | ||
|  | 			r->reg = be32_to_cpup(p++); | ||
|  | 			r->lockreg = be32_to_cpup(p++); | ||
|  | 			r->key = be32_to_cpup(p++); | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * SoCs may have DSCR registers which are only write enabled after | ||
|  |  * writing specific key values to two registers. The two key registers | ||
|  |  * and the key values can be parsed from a "ti,dscr-kick-regs" | ||
|  |  * propety with the following layout: | ||
|  |  * | ||
|  |  *	ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1> | ||
|  |  * | ||
|  |  * kickreg is the offset of the "kick" register | ||
|  |  * key is the value which unlocks writing for protected regs | ||
|  |  */ | ||
|  | static void __init dscr_parse_kick_regs(struct device_node *node, | ||
|  | 					void __iomem *base) | ||
|  | { | ||
|  | 	u32 vals[4]; | ||
|  | 	int err; | ||
|  | 
 | ||
|  | 	err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4); | ||
|  | 	if (!err) { | ||
|  | 		dscr.kick_reg[0] = vals[0]; | ||
|  | 		dscr.kick_key[0] = vals[1]; | ||
|  | 		dscr.kick_reg[1] = vals[2]; | ||
|  | 		dscr.kick_key[1] = vals[3]; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * SoCs may provide controls to enable/disable individual IP blocks. These | ||
|  |  * controls in the DSCR usually control pin drivers but also may control | ||
|  |  * clocking and or resets. The device tree is used to describe the bitfields | ||
|  |  * in registers used to control device state. The number of bits and their | ||
|  |  * values may vary even within the same register. | ||
|  |  * | ||
|  |  * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs | ||
|  |  * property. This property is a list where each element describes a contiguous | ||
|  |  * range of control fields with like properties. Each element of the list | ||
|  |  * consists of 7 cells with the following values: | ||
|  |  * | ||
|  |  *   start_id num_ids reg enable disable start_bit nbits | ||
|  |  * | ||
|  |  * start_id is device id for the first device control in the range | ||
|  |  * num_ids is the number of device controls in the range | ||
|  |  * reg is the offset of the register holding the control bits | ||
|  |  * enable is the value to enable a device | ||
|  |  * disable is the value to disable a device (0xffffffff if cannot disable) | ||
|  |  * start_bit is the bit number of the first bit in the range | ||
|  |  * nbits is the number of bits per device control | ||
|  |  */ | ||
|  | static void __init dscr_parse_devstate_ctl_regs(struct device_node *node, | ||
|  | 						void __iomem *base) | ||
|  | { | ||
|  | 	struct devstate_ctl_reg *r; | ||
|  | 	const __be32 *p; | ||
|  | 	int i, j, size; | ||
|  | 
 | ||
|  | 	p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size); | ||
|  | 	if (p) { | ||
|  | 		/* parse all the ranges we can handle */ | ||
|  | 		size /= (sizeof(*p) * 7); | ||
|  | 		if (size > MAX_DEVCTL_REGS) | ||
|  | 			size = MAX_DEVCTL_REGS; | ||
|  | 
 | ||
|  | 		for (i = 0; i < size; i++) { | ||
|  | 			r = &dscr.devctl[i]; | ||
|  | 
 | ||
|  | 			r->start_id = be32_to_cpup(p++); | ||
|  | 			r->num_ids = be32_to_cpup(p++); | ||
|  | 			r->reg = be32_to_cpup(p++); | ||
|  | 			r->enable = be32_to_cpup(p++); | ||
|  | 			r->disable = be32_to_cpup(p++); | ||
|  | 			if (r->disable == 0xffffffff) | ||
|  | 				r->enable_only = 1; | ||
|  | 			r->shift = be32_to_cpup(p++); | ||
|  | 			r->nbits = be32_to_cpup(p++); | ||
|  | 
 | ||
|  | 			for (j = r->start_id; | ||
|  | 			     j < (r->start_id + r->num_ids); | ||
|  | 			     j++) | ||
|  | 				dscr.devstate_info[j].ctl = r; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * SoCs may provide status registers indicating the state (enabled/disabled) of | ||
|  |  * devices on the SoC. The device tree is used to describe the bitfields in | ||
|  |  * registers used to provide device status. The number of bits and their | ||
|  |  * values used to provide status may vary even within the same register. | ||
|  |  * | ||
|  |  * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs | ||
|  |  * property. This property is a list where each element describes a contiguous | ||
|  |  * range of status fields with like properties. Each element of the list | ||
|  |  * consists of 7 cells with the following values: | ||
|  |  * | ||
|  |  *   start_id num_ids reg enable disable start_bit nbits | ||
|  |  * | ||
|  |  * start_id is device id for the first device status in the range | ||
|  |  * num_ids is the number of devices covered by the range | ||
|  |  * reg is the offset of the register holding the status bits | ||
|  |  * enable is the value indicating device is enabled | ||
|  |  * disable is the value indicating device is disabled | ||
|  |  * start_bit is the bit number of the first bit in the range | ||
|  |  * nbits is the number of bits per device status | ||
|  |  */ | ||
|  | static void __init dscr_parse_devstate_stat_regs(struct device_node *node, | ||
|  | 						 void __iomem *base) | ||
|  | { | ||
|  | 	struct devstate_stat_reg *r; | ||
|  | 	const __be32 *p; | ||
|  | 	int i, j, size; | ||
|  | 
 | ||
|  | 	p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size); | ||
|  | 	if (p) { | ||
|  | 		/* parse all the ranges we can handle */ | ||
|  | 		size /= (sizeof(*p) * 7); | ||
|  | 		if (size > MAX_DEVSTAT_REGS) | ||
|  | 			size = MAX_DEVSTAT_REGS; | ||
|  | 
 | ||
|  | 		for (i = 0; i < size; i++) { | ||
|  | 			r = &dscr.devstat[i]; | ||
|  | 
 | ||
|  | 			r->start_id = be32_to_cpup(p++); | ||
|  | 			r->num_ids = be32_to_cpup(p++); | ||
|  | 			r->reg = be32_to_cpup(p++); | ||
|  | 			r->enable = be32_to_cpup(p++); | ||
|  | 			r->disable = be32_to_cpup(p++); | ||
|  | 			r->shift = be32_to_cpup(p++); | ||
|  | 			r->nbits = be32_to_cpup(p++); | ||
|  | 
 | ||
|  | 			for (j = r->start_id; | ||
|  | 			     j < (r->start_id + r->num_ids); | ||
|  | 			     j++) | ||
|  | 				dscr.devstate_info[j].stat = r; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | static struct of_device_id dscr_ids[] __initdata = { | ||
|  | 	{ .compatible = "ti,c64x+dscr" }, | ||
|  | 	{} | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Probe for DSCR area. | ||
|  |  * | ||
|  |  * This has to be done early on in case timer or interrupt controller | ||
|  |  * needs something. e.g. On C6455 SoC, timer must be enabled through | ||
|  |  * DSCR before it is functional. | ||
|  |  */ | ||
|  | void __init dscr_probe(void) | ||
|  | { | ||
|  | 	struct device_node *node; | ||
|  | 	void __iomem *base; | ||
|  | 
 | ||
|  | 	spin_lock_init(&dscr.lock); | ||
|  | 
 | ||
|  | 	node = of_find_matching_node(NULL, dscr_ids); | ||
|  | 	if (!node) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	base = of_iomap(node, 0); | ||
|  | 	if (!base) { | ||
|  | 		of_node_put(node); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	dscr.base = base; | ||
|  | 
 | ||
|  | 	dscr_parse_devstat(node, base); | ||
|  | 	dscr_parse_silicon_rev(node, base); | ||
|  | 	dscr_parse_mac_fuse(node, base); | ||
|  | 	dscr_parse_rmii_resets(node, base); | ||
|  | 	dscr_parse_locked_regs(node, base); | ||
|  | 	dscr_parse_kick_regs(node, base); | ||
|  | 	dscr_parse_devstate_ctl_regs(node, base); | ||
|  | 	dscr_parse_devstate_stat_regs(node, base); | ||
|  | 	dscr_parse_privperm(node, base); | ||
|  | } |