516 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			516 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  *  Copyright 2010 | ||
|  |  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> | ||
|  |  * | ||
|  |  * This code provides a IOMMU for Xen PV guests with PCI passthrough. | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License v2.0 as published by | ||
|  |  * the Free Software Foundation | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * PV guests under Xen are running in an non-contiguous memory architecture. | ||
|  |  * | ||
|  |  * When PCI pass-through is utilized, this necessitates an IOMMU for | ||
|  |  * translating bus (DMA) to virtual and vice-versa and also providing a | ||
|  |  * mechanism to have contiguous pages for device drivers operations (say DMA | ||
|  |  * operations). | ||
|  |  * | ||
|  |  * Specifically, under Xen the Linux idea of pages is an illusion. It | ||
|  |  * assumes that pages start at zero and go up to the available memory. To | ||
|  |  * help with that, the Linux Xen MMU provides a lookup mechanism to | ||
|  |  * translate the page frame numbers (PFN) to machine frame numbers (MFN) | ||
|  |  * and vice-versa. The MFN are the "real" frame numbers. Furthermore | ||
|  |  * memory is not contiguous. Xen hypervisor stitches memory for guests | ||
|  |  * from different pools, which means there is no guarantee that PFN==MFN | ||
|  |  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are | ||
|  |  * allocated in descending order (high to low), meaning the guest might | ||
|  |  * never get any MFN's under the 4GB mark. | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <linux/bootmem.h>
 | ||
|  | #include <linux/dma-mapping.h>
 | ||
|  | #include <xen/swiotlb-xen.h>
 | ||
|  | #include <xen/page.h>
 | ||
|  | #include <xen/xen-ops.h>
 | ||
|  | /*
 | ||
|  |  * Used to do a quick range check in swiotlb_tbl_unmap_single and | ||
|  |  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | ||
|  |  * API. | ||
|  |  */ | ||
|  | 
 | ||
|  | static char *xen_io_tlb_start, *xen_io_tlb_end; | ||
|  | static unsigned long xen_io_tlb_nslabs; | ||
|  | /*
 | ||
|  |  * Quick lookup value of the bus address of the IOTLB. | ||
|  |  */ | ||
|  | 
 | ||
|  | u64 start_dma_addr; | ||
|  | 
 | ||
|  | static dma_addr_t xen_phys_to_bus(phys_addr_t paddr) | ||
|  | { | ||
|  | 	return phys_to_machine(XPADDR(paddr)).maddr;; | ||
|  | } | ||
|  | 
 | ||
|  | static phys_addr_t xen_bus_to_phys(dma_addr_t baddr) | ||
|  | { | ||
|  | 	return machine_to_phys(XMADDR(baddr)).paddr; | ||
|  | } | ||
|  | 
 | ||
|  | static dma_addr_t xen_virt_to_bus(void *address) | ||
|  | { | ||
|  | 	return xen_phys_to_bus(virt_to_phys(address)); | ||
|  | } | ||
|  | 
 | ||
|  | static int check_pages_physically_contiguous(unsigned long pfn, | ||
|  | 					     unsigned int offset, | ||
|  | 					     size_t length) | ||
|  | { | ||
|  | 	unsigned long next_mfn; | ||
|  | 	int i; | ||
|  | 	int nr_pages; | ||
|  | 
 | ||
|  | 	next_mfn = pfn_to_mfn(pfn); | ||
|  | 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; | ||
|  | 
 | ||
|  | 	for (i = 1; i < nr_pages; i++) { | ||
|  | 		if (pfn_to_mfn(++pfn) != ++next_mfn) | ||
|  | 			return 0; | ||
|  | 	} | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | static int range_straddles_page_boundary(phys_addr_t p, size_t size) | ||
|  | { | ||
|  | 	unsigned long pfn = PFN_DOWN(p); | ||
|  | 	unsigned int offset = p & ~PAGE_MASK; | ||
|  | 
 | ||
|  | 	if (offset + size <= PAGE_SIZE) | ||
|  | 		return 0; | ||
|  | 	if (check_pages_physically_contiguous(pfn, offset, size)) | ||
|  | 		return 0; | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) | ||
|  | { | ||
|  | 	unsigned long mfn = PFN_DOWN(dma_addr); | ||
|  | 	unsigned long pfn = mfn_to_local_pfn(mfn); | ||
|  | 	phys_addr_t paddr; | ||
|  | 
 | ||
|  | 	/* If the address is outside our domain, it CAN
 | ||
|  | 	 * have the same virtual address as another address | ||
|  | 	 * in our domain. Therefore _only_ check address within our domain. | ||
|  | 	 */ | ||
|  | 	if (pfn_valid(pfn)) { | ||
|  | 		paddr = PFN_PHYS(pfn); | ||
|  | 		return paddr >= virt_to_phys(xen_io_tlb_start) && | ||
|  | 		       paddr < virt_to_phys(xen_io_tlb_end); | ||
|  | 	} | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | static int max_dma_bits = 32; | ||
|  | 
 | ||
|  | static int | ||
|  | xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) | ||
|  | { | ||
|  | 	int i, rc; | ||
|  | 	int dma_bits; | ||
|  | 
 | ||
|  | 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; | ||
|  | 
 | ||
|  | 	i = 0; | ||
|  | 	do { | ||
|  | 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); | ||
|  | 
 | ||
|  | 		do { | ||
|  | 			rc = xen_create_contiguous_region( | ||
|  | 				(unsigned long)buf + (i << IO_TLB_SHIFT), | ||
|  | 				get_order(slabs << IO_TLB_SHIFT), | ||
|  | 				dma_bits); | ||
|  | 		} while (rc && dma_bits++ < max_dma_bits); | ||
|  | 		if (rc) | ||
|  | 			return rc; | ||
|  | 
 | ||
|  | 		i += slabs; | ||
|  | 	} while (i < nslabs); | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | void __init xen_swiotlb_init(int verbose) | ||
|  | { | ||
|  | 	unsigned long bytes; | ||
|  | 	int rc; | ||
|  | 
 | ||
|  | 	xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); | ||
|  | 	xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); | ||
|  | 
 | ||
|  | 	bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Get IO TLB memory from any location. | ||
|  | 	 */ | ||
|  | 	xen_io_tlb_start = alloc_bootmem(bytes); | ||
|  | 	if (!xen_io_tlb_start) | ||
|  | 		panic("Cannot allocate SWIOTLB buffer"); | ||
|  | 
 | ||
|  | 	xen_io_tlb_end = xen_io_tlb_start + bytes; | ||
|  | 	/*
 | ||
|  | 	 * And replace that memory with pages under 4GB. | ||
|  | 	 */ | ||
|  | 	rc = xen_swiotlb_fixup(xen_io_tlb_start, | ||
|  | 			       bytes, | ||
|  | 			       xen_io_tlb_nslabs); | ||
|  | 	if (rc) | ||
|  | 		goto error; | ||
|  | 
 | ||
|  | 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); | ||
|  | 	swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose); | ||
|  | 
 | ||
|  | 	return; | ||
|  | error: | ||
|  | 	panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\ | ||
|  | 	      "We either don't have the permission or you do not have enough"\ | ||
|  | 	      "free memory under 4GB!\n", rc); | ||
|  | } | ||
|  | 
 | ||
|  | void * | ||
|  | xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, | ||
|  | 			   dma_addr_t *dma_handle, gfp_t flags) | ||
|  | { | ||
|  | 	void *ret; | ||
|  | 	int order = get_order(size); | ||
|  | 	u64 dma_mask = DMA_BIT_MASK(32); | ||
|  | 	unsigned long vstart; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	* Ignore region specifiers - the kernel's ideas of | ||
|  | 	* pseudo-phys memory layout has nothing to do with the | ||
|  | 	* machine physical layout.  We can't allocate highmem | ||
|  | 	* because we can't return a pointer to it. | ||
|  | 	*/ | ||
|  | 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM); | ||
|  | 
 | ||
|  | 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) | ||
|  | 		return ret; | ||
|  | 
 | ||
|  | 	vstart = __get_free_pages(flags, order); | ||
|  | 	ret = (void *)vstart; | ||
|  | 
 | ||
|  | 	if (hwdev && hwdev->coherent_dma_mask) | ||
|  | 		dma_mask = dma_alloc_coherent_mask(hwdev, flags); | ||
|  | 
 | ||
|  | 	if (ret) { | ||
|  | 		if (xen_create_contiguous_region(vstart, order, | ||
|  | 						 fls64(dma_mask)) != 0) { | ||
|  | 			free_pages(vstart, order); | ||
|  | 			return NULL; | ||
|  | 		} | ||
|  | 		memset(ret, 0, size); | ||
|  | 		*dma_handle = virt_to_machine(ret).maddr; | ||
|  | 	} | ||
|  | 	return ret; | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); | ||
|  | 
 | ||
|  | void | ||
|  | xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | ||
|  | 			  dma_addr_t dev_addr) | ||
|  | { | ||
|  | 	int order = get_order(size); | ||
|  | 
 | ||
|  | 	if (dma_release_from_coherent(hwdev, order, vaddr)) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	xen_destroy_contiguous_region((unsigned long)vaddr, order); | ||
|  | 	free_pages((unsigned long)vaddr, order); | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Map a single buffer of the indicated size for DMA in streaming mode.  The | ||
|  |  * physical address to use is returned. | ||
|  |  * | ||
|  |  * Once the device is given the dma address, the device owns this memory until | ||
|  |  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. | ||
|  |  */ | ||
|  | dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, | ||
|  | 				unsigned long offset, size_t size, | ||
|  | 				enum dma_data_direction dir, | ||
|  | 				struct dma_attrs *attrs) | ||
|  | { | ||
|  | 	phys_addr_t phys = page_to_phys(page) + offset; | ||
|  | 	dma_addr_t dev_addr = xen_phys_to_bus(phys); | ||
|  | 	void *map; | ||
|  | 
 | ||
|  | 	BUG_ON(dir == DMA_NONE); | ||
|  | 	/*
 | ||
|  | 	 * If the address happens to be in the device's DMA window, | ||
|  | 	 * we can safely return the device addr and not worry about bounce | ||
|  | 	 * buffering it. | ||
|  | 	 */ | ||
|  | 	if (dma_capable(dev, dev_addr, size) && | ||
|  | 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force) | ||
|  | 		return dev_addr; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Oh well, have to allocate and map a bounce buffer. | ||
|  | 	 */ | ||
|  | 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); | ||
|  | 	if (!map) | ||
|  | 		return DMA_ERROR_CODE; | ||
|  | 
 | ||
|  | 	dev_addr = xen_virt_to_bus(map); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Ensure that the address returned is DMA'ble | ||
|  | 	 */ | ||
|  | 	if (!dma_capable(dev, dev_addr, size)) | ||
|  | 		panic("map_single: bounce buffer is not DMA'ble"); | ||
|  | 
 | ||
|  | 	return dev_addr; | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Unmap a single streaming mode DMA translation.  The dma_addr and size must | ||
|  |  * match what was provided for in a previous xen_swiotlb_map_page call.  All | ||
|  |  * other usages are undefined. | ||
|  |  * | ||
|  |  * After this call, reads by the cpu to the buffer are guaranteed to see | ||
|  |  * whatever the device wrote there. | ||
|  |  */ | ||
|  | static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, | ||
|  | 			     size_t size, enum dma_data_direction dir) | ||
|  | { | ||
|  | 	phys_addr_t paddr = xen_bus_to_phys(dev_addr); | ||
|  | 
 | ||
|  | 	BUG_ON(dir == DMA_NONE); | ||
|  | 
 | ||
|  | 	/* NOTE: We use dev_addr here, not paddr! */ | ||
|  | 	if (is_xen_swiotlb_buffer(dev_addr)) { | ||
|  | 		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (dir != DMA_FROM_DEVICE) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * phys_to_virt doesn't work with hihgmem page but we could | ||
|  | 	 * call dma_mark_clean() with hihgmem page here. However, we | ||
|  | 	 * are fine since dma_mark_clean() is null on POWERPC. We can | ||
|  | 	 * make dma_mark_clean() take a physical address if necessary. | ||
|  | 	 */ | ||
|  | 	dma_mark_clean(phys_to_virt(paddr), size); | ||
|  | } | ||
|  | 
 | ||
|  | void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | ||
|  | 			    size_t size, enum dma_data_direction dir, | ||
|  | 			    struct dma_attrs *attrs) | ||
|  | { | ||
|  | 	xen_unmap_single(hwdev, dev_addr, size, dir); | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Make physical memory consistent for a single streaming mode DMA translation | ||
|  |  * after a transfer. | ||
|  |  * | ||
|  |  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer | ||
|  |  * using the cpu, yet do not wish to teardown the dma mapping, you must | ||
|  |  * call this function before doing so.  At the next point you give the dma | ||
|  |  * address back to the card, you must first perform a | ||
|  |  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer | ||
|  |  */ | ||
|  | static void | ||
|  | xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, | ||
|  | 			size_t size, enum dma_data_direction dir, | ||
|  | 			enum dma_sync_target target) | ||
|  | { | ||
|  | 	phys_addr_t paddr = xen_bus_to_phys(dev_addr); | ||
|  | 
 | ||
|  | 	BUG_ON(dir == DMA_NONE); | ||
|  | 
 | ||
|  | 	/* NOTE: We use dev_addr here, not paddr! */ | ||
|  | 	if (is_xen_swiotlb_buffer(dev_addr)) { | ||
|  | 		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, | ||
|  | 				       target); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (dir != DMA_FROM_DEVICE) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	dma_mark_clean(phys_to_virt(paddr), size); | ||
|  | } | ||
|  | 
 | ||
|  | void | ||
|  | xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | ||
|  | 				size_t size, enum dma_data_direction dir) | ||
|  | { | ||
|  | 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); | ||
|  | 
 | ||
|  | void | ||
|  | xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | ||
|  | 				   size_t size, enum dma_data_direction dir) | ||
|  | { | ||
|  | 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Map a set of buffers described by scatterlist in streaming mode for DMA. | ||
|  |  * This is the scatter-gather version of the above xen_swiotlb_map_page | ||
|  |  * interface.  Here the scatter gather list elements are each tagged with the | ||
|  |  * appropriate dma address and length.  They are obtained via | ||
|  |  * sg_dma_{address,length}(SG). | ||
|  |  * | ||
|  |  * NOTE: An implementation may be able to use a smaller number of | ||
|  |  *       DMA address/length pairs than there are SG table elements. | ||
|  |  *       (for example via virtual mapping capabilities) | ||
|  |  *       The routine returns the number of addr/length pairs actually | ||
|  |  *       used, at most nents. | ||
|  |  * | ||
|  |  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the | ||
|  |  * same here. | ||
|  |  */ | ||
|  | int | ||
|  | xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, | ||
|  | 			 int nelems, enum dma_data_direction dir, | ||
|  | 			 struct dma_attrs *attrs) | ||
|  | { | ||
|  | 	struct scatterlist *sg; | ||
|  | 	int i; | ||
|  | 
 | ||
|  | 	BUG_ON(dir == DMA_NONE); | ||
|  | 
 | ||
|  | 	for_each_sg(sgl, sg, nelems, i) { | ||
|  | 		phys_addr_t paddr = sg_phys(sg); | ||
|  | 		dma_addr_t dev_addr = xen_phys_to_bus(paddr); | ||
|  | 
 | ||
|  | 		if (swiotlb_force || | ||
|  | 		    !dma_capable(hwdev, dev_addr, sg->length) || | ||
|  | 		    range_straddles_page_boundary(paddr, sg->length)) { | ||
|  | 			void *map = swiotlb_tbl_map_single(hwdev, | ||
|  | 							   start_dma_addr, | ||
|  | 							   sg_phys(sg), | ||
|  | 							   sg->length, dir); | ||
|  | 			if (!map) { | ||
|  | 				/* Don't panic here, we expect map_sg users
 | ||
|  | 				   to do proper error handling. */ | ||
|  | 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, | ||
|  | 							   attrs); | ||
|  | 				sgl[0].dma_length = 0; | ||
|  | 				return DMA_ERROR_CODE; | ||
|  | 			} | ||
|  | 			sg->dma_address = xen_virt_to_bus(map); | ||
|  | 		} else | ||
|  | 			sg->dma_address = dev_addr; | ||
|  | 		sg->dma_length = sg->length; | ||
|  | 	} | ||
|  | 	return nelems; | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); | ||
|  | 
 | ||
|  | int | ||
|  | xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | ||
|  | 		   enum dma_data_direction dir) | ||
|  | { | ||
|  | 	return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg); | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules | ||
|  |  * concerning calls here are the same as for swiotlb_unmap_page() above. | ||
|  |  */ | ||
|  | void | ||
|  | xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, | ||
|  | 			   int nelems, enum dma_data_direction dir, | ||
|  | 			   struct dma_attrs *attrs) | ||
|  | { | ||
|  | 	struct scatterlist *sg; | ||
|  | 	int i; | ||
|  | 
 | ||
|  | 	BUG_ON(dir == DMA_NONE); | ||
|  | 
 | ||
|  | 	for_each_sg(sgl, sg, nelems, i) | ||
|  | 		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); | ||
|  | 
 | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); | ||
|  | 
 | ||
|  | void | ||
|  | xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | ||
|  | 		     enum dma_data_direction dir) | ||
|  | { | ||
|  | 	return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg); | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Make physical memory consistent for a set of streaming mode DMA translations | ||
|  |  * after a transfer. | ||
|  |  * | ||
|  |  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | ||
|  |  * and usage. | ||
|  |  */ | ||
|  | static void | ||
|  | xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, | ||
|  | 		    int nelems, enum dma_data_direction dir, | ||
|  | 		    enum dma_sync_target target) | ||
|  | { | ||
|  | 	struct scatterlist *sg; | ||
|  | 	int i; | ||
|  | 
 | ||
|  | 	for_each_sg(sgl, sg, nelems, i) | ||
|  | 		xen_swiotlb_sync_single(hwdev, sg->dma_address, | ||
|  | 					sg->dma_length, dir, target); | ||
|  | } | ||
|  | 
 | ||
|  | void | ||
|  | xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | ||
|  | 			    int nelems, enum dma_data_direction dir) | ||
|  | { | ||
|  | 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); | ||
|  | 
 | ||
|  | void | ||
|  | xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | ||
|  | 			       int nelems, enum dma_data_direction dir) | ||
|  | { | ||
|  | 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); | ||
|  | 
 | ||
|  | int | ||
|  | xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) | ||
|  | { | ||
|  | 	return !dma_addr; | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Return whether the given device DMA address mask can be supported | ||
|  |  * properly.  For example, if your device can only drive the low 24-bits | ||
|  |  * during bus mastering, then you would pass 0x00ffffff as the mask to | ||
|  |  * this function. | ||
|  |  */ | ||
|  | int | ||
|  | xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) | ||
|  | { | ||
|  | 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; | ||
|  | } | ||
|  | EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); |