777 lines
		
	
	
	
		
			26 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			777 lines
		
	
	
	
		
			26 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*****************************************************************************
 | ||
|  | * Copyright 2003 - 2008 Broadcom Corporation.  All rights reserved. | ||
|  | * | ||
|  | * Unless you and Broadcom execute a separate written software license | ||
|  | * agreement governing use of this software, this software is licensed to you | ||
|  | * under the terms of the GNU General Public License version 2, available at | ||
|  | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
 | ||
|  | * | ||
|  | * Notwithstanding the above, under no circumstances may you combine this | ||
|  | * software in any way with any other Broadcom software provided under a | ||
|  | * license other than the GPL, without Broadcom's express prior written | ||
|  | * consent. | ||
|  | *****************************************************************************/ | ||
|  | 
 | ||
|  | /****************************************************************************/ | ||
|  | /**
 | ||
|  | *  @file    chipcHw.c | ||
|  | * | ||
|  | *  @brief   Low level Various CHIP clock controlling routines | ||
|  | * | ||
|  | *  @note | ||
|  | * | ||
|  | *   These routines provide basic clock controlling functionality only. | ||
|  | */ | ||
|  | /****************************************************************************/ | ||
|  | 
 | ||
|  | /* ---- Include Files ---------------------------------------------------- */ | ||
|  | 
 | ||
|  | #include <csp/errno.h>
 | ||
|  | #include <csp/stdint.h>
 | ||
|  | #include <csp/module.h>
 | ||
|  | 
 | ||
|  | #include <mach/csp/chipcHw_def.h>
 | ||
|  | #include <mach/csp/chipcHw_inline.h>
 | ||
|  | 
 | ||
|  | #include <csp/reg.h>
 | ||
|  | #include <csp/delay.h>
 | ||
|  | 
 | ||
|  | /* ---- Private Constants and Types --------------------------------------- */ | ||
|  | 
 | ||
|  | /* VPM alignment algorithm uses this */ | ||
|  | #define MAX_PHASE_ADJUST_COUNT         0xFFFF	/* Max number of times allowed to adjust the phase */
 | ||
|  | #define MAX_PHASE_ALIGN_ATTEMPTS       10	/* Max number of attempt to align the phase */
 | ||
|  | 
 | ||
|  | /* Local definition of clock type */ | ||
|  | #define PLL_CLOCK                      1	/* PLL Clock */
 | ||
|  | #define NON_PLL_CLOCK                  2	/* Divider clock */
 | ||
|  | 
 | ||
|  | static int chipcHw_divide(int num, int denom) | ||
|  |     __attribute__ ((section(".aramtext"))); | ||
|  | 
 | ||
|  | /****************************************************************************/ | ||
|  | /**
 | ||
|  | *  @brief   Set clock fequency for miscellaneous configurable clocks | ||
|  | * | ||
|  | *  This function sets clock frequency | ||
|  | * | ||
|  | *  @return  Configured clock frequency in hertz | ||
|  | * | ||
|  | */ | ||
|  | /****************************************************************************/ | ||
|  | chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock	/*  [ IN ] Configurable clock */ | ||
|  |     ) { | ||
|  | 	volatile uint32_t *pPLLReg = (uint32_t *) 0x0; | ||
|  | 	volatile uint32_t *pClockCtrl = (uint32_t *) 0x0; | ||
|  | 	volatile uint32_t *pDependentClock = (uint32_t *) 0x0; | ||
|  | 	uint32_t vcoFreqPll1Hz = 0;	/* Effective VCO frequency for PLL1 in Hz */ | ||
|  | 	uint32_t vcoFreqPll2Hz = 0;	/* Effective VCO frequency for PLL2 in Hz */ | ||
|  | 	uint32_t dependentClockType = 0; | ||
|  | 	uint32_t vcoHz = 0; | ||
|  | 
 | ||
|  | 	/* Get VCO frequencies */ | ||
|  | 	if ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) { | ||
|  | 		uint64_t adjustFreq = 0; | ||
|  | 
 | ||
|  | 		vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * | ||
|  | 		    chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * | ||
|  | 		    ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> | ||
|  | 		     chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); | ||
|  | 
 | ||
|  | 		/* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */ | ||
|  | 		adjustFreq = (uint64_t) chipcHw_XTAL_FREQ_Hz * | ||
|  | 			(uint64_t) chipcHw_REG_PLL_DIVIDER_NDIV_f_SS * | ||
|  | 			chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, (chipcHw_REG_PLL_PREDIVIDER_P2 * (uint64_t) chipcHw_REG_PLL_DIVIDER_FRAC)); | ||
|  | 		vcoFreqPll1Hz += (uint32_t) adjustFreq; | ||
|  | 	} else { | ||
|  | 		vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * | ||
|  | 		    chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * | ||
|  | 		    ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> | ||
|  | 		     chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); | ||
|  | 	} | ||
|  | 	vcoFreqPll2Hz = | ||
|  | 	    chipcHw_XTAL_FREQ_Hz * | ||
|  | 		 chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * | ||
|  | 	    ((pChipcHw->PLLPreDivider2 & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> | ||
|  | 	     chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); | ||
|  | 
 | ||
|  | 	switch (clock) { | ||
|  | 	case chipcHw_CLOCK_DDR: | ||
|  | 		pPLLReg = &pChipcHw->DDRClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_ARM: | ||
|  | 		pPLLReg = &pChipcHw->ARMClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_ESW: | ||
|  | 		pPLLReg = &pChipcHw->ESWClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_VPM: | ||
|  | 		pPLLReg = &pChipcHw->VPMClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_ESW125: | ||
|  | 		pPLLReg = &pChipcHw->ESW125Clock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_UART: | ||
|  | 		pPLLReg = &pChipcHw->UARTClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_SDIO0: | ||
|  | 		pPLLReg = &pChipcHw->SDIO0Clock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_SDIO1: | ||
|  | 		pPLLReg = &pChipcHw->SDIO1Clock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_SPI: | ||
|  | 		pPLLReg = &pChipcHw->SPIClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_ETM: | ||
|  | 		pPLLReg = &pChipcHw->ETMClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_USB: | ||
|  | 		pPLLReg = &pChipcHw->USBClock; | ||
|  | 		vcoHz = vcoFreqPll2Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_LCD: | ||
|  | 		pPLLReg = &pChipcHw->LCDClock; | ||
|  | 		vcoHz = vcoFreqPll2Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_APM: | ||
|  | 		pPLLReg = &pChipcHw->APMClock; | ||
|  | 		vcoHz = vcoFreqPll2Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_BUS: | ||
|  | 		pClockCtrl = &pChipcHw->ACLKClock; | ||
|  | 		pDependentClock = &pChipcHw->ARMClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		dependentClockType = PLL_CLOCK; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_OTP: | ||
|  | 		pClockCtrl = &pChipcHw->OTPClock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_I2C: | ||
|  | 		pClockCtrl = &pChipcHw->I2CClock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_I2S0: | ||
|  | 		pClockCtrl = &pChipcHw->I2S0Clock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_RTBUS: | ||
|  | 		pClockCtrl = &pChipcHw->RTBUSClock; | ||
|  | 		pDependentClock = &pChipcHw->ACLKClock; | ||
|  | 		dependentClockType = NON_PLL_CLOCK; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_APM100: | ||
|  | 		pClockCtrl = &pChipcHw->APM100Clock; | ||
|  | 		pDependentClock = &pChipcHw->APMClock; | ||
|  | 		vcoHz = vcoFreqPll2Hz; | ||
|  | 		dependentClockType = PLL_CLOCK; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_TSC: | ||
|  | 		pClockCtrl = &pChipcHw->TSCClock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_LED: | ||
|  | 		pClockCtrl = &pChipcHw->LEDClock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_I2S1: | ||
|  | 		pClockCtrl = &pChipcHw->I2S1Clock; | ||
|  | 		break; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (pPLLReg) { | ||
|  | 		/* Obtain PLL clock frequency */ | ||
|  | 		if (*pPLLReg & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) { | ||
|  | 			/* Return crystal clock frequency when bypassed */ | ||
|  | 			return chipcHw_XTAL_FREQ_Hz; | ||
|  | 		} else if (clock == chipcHw_CLOCK_DDR) { | ||
|  | 			/* DDR frequency is configured in PLLDivider register */ | ||
|  | 			return chipcHw_divide (vcoHz, (((pChipcHw->PLLDivider & 0xFF000000) >> 24) ? ((pChipcHw->PLLDivider & 0xFF000000) >> 24) : 256)); | ||
|  | 		} else { | ||
|  | 			/* From chip revision number B0, LCD clock is internally divided by 2 */ | ||
|  | 			if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) { | ||
|  | 				vcoHz >>= 1; | ||
|  | 			} | ||
|  | 			/* Obtain PLL clock frequency using VCO dividers */ | ||
|  | 			return chipcHw_divide(vcoHz, ((*pPLLReg & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (*pPLLReg & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256)); | ||
|  | 		} | ||
|  | 	} else if (pClockCtrl) { | ||
|  | 		/* Obtain divider clock frequency */ | ||
|  | 		uint32_t div; | ||
|  | 		uint32_t freq = 0; | ||
|  | 
 | ||
|  | 		if (*pClockCtrl & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) { | ||
|  | 			/* Return crystal clock frequency when bypassed */ | ||
|  | 			return chipcHw_XTAL_FREQ_Hz; | ||
|  | 		} else if (pDependentClock) { | ||
|  | 			/* Identify the dependent clock frequency */ | ||
|  | 			switch (dependentClockType) { | ||
|  | 			case PLL_CLOCK: | ||
|  | 				if (*pDependentClock & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) { | ||
|  | 					/* Use crystal clock frequency when dependent PLL clock is bypassed */ | ||
|  | 					freq = chipcHw_XTAL_FREQ_Hz; | ||
|  | 				} else { | ||
|  | 					/* Obtain PLL clock frequency using VCO dividers */ | ||
|  | 					div = *pDependentClock & chipcHw_REG_PLL_CLOCK_MDIV_MASK; | ||
|  | 					freq = div ? chipcHw_divide(vcoHz, div) : 0; | ||
|  | 				} | ||
|  | 				break; | ||
|  | 			case NON_PLL_CLOCK: | ||
|  | 				if (pDependentClock == (uint32_t *) &pChipcHw->ACLKClock) { | ||
|  | 					freq = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS); | ||
|  | 				} else { | ||
|  | 					if (*pDependentClock & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) { | ||
|  | 						/* Use crystal clock frequency when dependent divider clock is bypassed */ | ||
|  | 						freq = chipcHw_XTAL_FREQ_Hz; | ||
|  | 					} else { | ||
|  | 						/* Obtain divider clock frequency using XTAL dividers */ | ||
|  | 						div = *pDependentClock & chipcHw_REG_DIV_CLOCK_DIV_MASK; | ||
|  | 						freq = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, (div ? div : 256)); | ||
|  | 					} | ||
|  | 				} | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} else { | ||
|  | 			/* Dependent on crystal clock */ | ||
|  | 			freq = chipcHw_XTAL_FREQ_Hz; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		div = *pClockCtrl & chipcHw_REG_DIV_CLOCK_DIV_MASK; | ||
|  | 		return chipcHw_divide(freq, (div ? div : 256)); | ||
|  | 	} | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /****************************************************************************/ | ||
|  | /**
 | ||
|  | *  @brief   Set clock fequency for miscellaneous configurable clocks | ||
|  | * | ||
|  | *  This function sets clock frequency | ||
|  | * | ||
|  | *  @return  Configured clock frequency in Hz | ||
|  | * | ||
|  | */ | ||
|  | /****************************************************************************/ | ||
|  | chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock,	/*  [ IN ] Configurable clock */ | ||
|  | 				       uint32_t freq	/*  [ IN ] Clock frequency in Hz */ | ||
|  |     ) { | ||
|  | 	volatile uint32_t *pPLLReg = (uint32_t *) 0x0; | ||
|  | 	volatile uint32_t *pClockCtrl = (uint32_t *) 0x0; | ||
|  | 	volatile uint32_t *pDependentClock = (uint32_t *) 0x0; | ||
|  | 	uint32_t vcoFreqPll1Hz = 0;	/* Effective VCO frequency for PLL1 in Hz */ | ||
|  | 	uint32_t desVcoFreqPll1Hz = 0;	/* Desired VCO frequency for PLL1 in Hz */ | ||
|  | 	uint32_t vcoFreqPll2Hz = 0;	/* Effective VCO frequency for PLL2 in Hz */ | ||
|  | 	uint32_t dependentClockType = 0; | ||
|  | 	uint32_t vcoHz = 0; | ||
|  | 	uint32_t desVcoHz = 0; | ||
|  | 
 | ||
|  | 	/* Get VCO frequencies */ | ||
|  | 	if ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) { | ||
|  | 		uint64_t adjustFreq = 0; | ||
|  | 
 | ||
|  | 		vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * | ||
|  | 		    chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * | ||
|  | 		    ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> | ||
|  | 		     chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); | ||
|  | 
 | ||
|  | 		/* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */ | ||
|  | 		adjustFreq = (uint64_t) chipcHw_XTAL_FREQ_Hz * | ||
|  | 			(uint64_t) chipcHw_REG_PLL_DIVIDER_NDIV_f_SS * | ||
|  | 			chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, (chipcHw_REG_PLL_PREDIVIDER_P2 * (uint64_t) chipcHw_REG_PLL_DIVIDER_FRAC)); | ||
|  | 		vcoFreqPll1Hz += (uint32_t) adjustFreq; | ||
|  | 
 | ||
|  | 		/* Desired VCO frequency */ | ||
|  | 		desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * | ||
|  | 		    chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * | ||
|  | 		    (((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> | ||
|  | 		      chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT) + 1); | ||
|  | 	} else { | ||
|  | 		vcoFreqPll1Hz = desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * | ||
|  | 		    chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * | ||
|  | 		    ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> | ||
|  | 		     chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); | ||
|  | 	} | ||
|  | 	vcoFreqPll2Hz = chipcHw_XTAL_FREQ_Hz * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * | ||
|  | 	    ((pChipcHw->PLLPreDivider2 & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> | ||
|  | 	     chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); | ||
|  | 
 | ||
|  | 	switch (clock) { | ||
|  | 	case chipcHw_CLOCK_DDR: | ||
|  | 		/* Configure the DDR_ctrl:BUS ratio settings */ | ||
|  | 		{ | ||
|  | 			REG_LOCAL_IRQ_SAVE; | ||
|  | 			/* Dvide DDR_phy by two to obtain DDR_ctrl clock */ | ||
|  | 			pChipcHw->DDRClock = (pChipcHw->DDRClock & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((((freq / 2) / chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1) | ||
|  | 				<< chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT); | ||
|  | 			REG_LOCAL_IRQ_RESTORE; | ||
|  | 		} | ||
|  | 		pPLLReg = &pChipcHw->DDRClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_ARM: | ||
|  | 		pPLLReg = &pChipcHw->ARMClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_ESW: | ||
|  | 		pPLLReg = &pChipcHw->ESWClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_VPM: | ||
|  | 		/* Configure the VPM:BUS ratio settings */ | ||
|  | 		{ | ||
|  | 			REG_LOCAL_IRQ_SAVE; | ||
|  | 			pChipcHw->VPMClock = (pChipcHw->VPMClock & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((chipcHw_divide (freq, chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1) | ||
|  | 				<< chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT); | ||
|  | 			REG_LOCAL_IRQ_RESTORE; | ||
|  | 		} | ||
|  | 		pPLLReg = &pChipcHw->VPMClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_ESW125: | ||
|  | 		pPLLReg = &pChipcHw->ESW125Clock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_UART: | ||
|  | 		pPLLReg = &pChipcHw->UARTClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_SDIO0: | ||
|  | 		pPLLReg = &pChipcHw->SDIO0Clock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_SDIO1: | ||
|  | 		pPLLReg = &pChipcHw->SDIO1Clock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_SPI: | ||
|  | 		pPLLReg = &pChipcHw->SPIClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_ETM: | ||
|  | 		pPLLReg = &pChipcHw->ETMClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_USB: | ||
|  | 		pPLLReg = &pChipcHw->USBClock; | ||
|  | 		vcoHz = vcoFreqPll2Hz; | ||
|  | 		desVcoHz = vcoFreqPll2Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_LCD: | ||
|  | 		pPLLReg = &pChipcHw->LCDClock; | ||
|  | 		vcoHz = vcoFreqPll2Hz; | ||
|  | 		desVcoHz = vcoFreqPll2Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_APM: | ||
|  | 		pPLLReg = &pChipcHw->APMClock; | ||
|  | 		vcoHz = vcoFreqPll2Hz; | ||
|  | 		desVcoHz = vcoFreqPll2Hz; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_BUS: | ||
|  | 		pClockCtrl = &pChipcHw->ACLKClock; | ||
|  | 		pDependentClock = &pChipcHw->ARMClock; | ||
|  | 		vcoHz = vcoFreqPll1Hz; | ||
|  | 		desVcoHz = desVcoFreqPll1Hz; | ||
|  | 		dependentClockType = PLL_CLOCK; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_OTP: | ||
|  | 		pClockCtrl = &pChipcHw->OTPClock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_I2C: | ||
|  | 		pClockCtrl = &pChipcHw->I2CClock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_I2S0: | ||
|  | 		pClockCtrl = &pChipcHw->I2S0Clock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_RTBUS: | ||
|  | 		pClockCtrl = &pChipcHw->RTBUSClock; | ||
|  | 		pDependentClock = &pChipcHw->ACLKClock; | ||
|  | 		dependentClockType = NON_PLL_CLOCK; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_APM100: | ||
|  | 		pClockCtrl = &pChipcHw->APM100Clock; | ||
|  | 		pDependentClock = &pChipcHw->APMClock; | ||
|  | 		vcoHz = vcoFreqPll2Hz; | ||
|  | 		desVcoHz = vcoFreqPll2Hz; | ||
|  | 		dependentClockType = PLL_CLOCK; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_TSC: | ||
|  | 		pClockCtrl = &pChipcHw->TSCClock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_LED: | ||
|  | 		pClockCtrl = &pChipcHw->LEDClock; | ||
|  | 		break; | ||
|  | 	case chipcHw_CLOCK_I2S1: | ||
|  | 		pClockCtrl = &pChipcHw->I2S1Clock; | ||
|  | 		break; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (pPLLReg) { | ||
|  | 		/* Select XTAL as bypass source */ | ||
|  | 		reg32_modify_and(pPLLReg, ~chipcHw_REG_PLL_CLOCK_SOURCE_GPIO); | ||
|  | 		reg32_modify_or(pPLLReg, chipcHw_REG_PLL_CLOCK_BYPASS_SELECT); | ||
|  | 		/* For DDR settings use only the PLL divider clock */ | ||
|  | 		if (pPLLReg == &pChipcHw->DDRClock) { | ||
|  | 			/* Set M1DIV for PLL1, which controls the DDR clock */ | ||
|  | 			reg32_write(&pChipcHw->PLLDivider, (pChipcHw->PLLDivider & 0x00FFFFFF) | ((chipcHw_REG_PLL_DIVIDER_MDIV (desVcoHz, freq)) << 24)); | ||
|  | 			/* Calculate expected frequency */ | ||
|  | 			freq = chipcHw_divide(vcoHz, (((pChipcHw->PLLDivider & 0xFF000000) >> 24) ? ((pChipcHw->PLLDivider & 0xFF000000) >> 24) : 256)); | ||
|  | 		} else { | ||
|  | 			/* From chip revision number B0, LCD clock is internally divided by 2 */ | ||
|  | 			if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) { | ||
|  | 				desVcoHz >>= 1; | ||
|  | 				vcoHz >>= 1; | ||
|  | 			} | ||
|  | 			/* Set MDIV to change the frequency */ | ||
|  | 			reg32_modify_and(pPLLReg, ~(chipcHw_REG_PLL_CLOCK_MDIV_MASK)); | ||
|  | 			reg32_modify_or(pPLLReg, chipcHw_REG_PLL_DIVIDER_MDIV(desVcoHz, freq)); | ||
|  | 			/* Calculate expected frequency */ | ||
|  | 			freq = chipcHw_divide(vcoHz, ((*(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (*(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256)); | ||
|  | 		} | ||
|  | 		/* Wait for for atleast 200ns as per the protocol to change frequency */ | ||
|  | 		udelay(1); | ||
|  | 		/* Do not bypass */ | ||
|  | 		reg32_modify_and(pPLLReg, ~chipcHw_REG_PLL_CLOCK_BYPASS_SELECT); | ||
|  | 		/* Return the configured frequency */ | ||
|  | 		return freq; | ||
|  | 	} else if (pClockCtrl) { | ||
|  | 		uint32_t divider = 0; | ||
|  | 
 | ||
|  | 		/* Divider clock should not be bypassed  */ | ||
|  | 		reg32_modify_and(pClockCtrl, | ||
|  | 				 ~chipcHw_REG_DIV_CLOCK_BYPASS_SELECT); | ||
|  | 
 | ||
|  | 		/* Identify the clock source */ | ||
|  | 		if (pDependentClock) { | ||
|  | 			switch (dependentClockType) { | ||
|  | 			case PLL_CLOCK: | ||
|  | 				divider = chipcHw_divide(chipcHw_divide (desVcoHz, (*pDependentClock & chipcHw_REG_PLL_CLOCK_MDIV_MASK)), freq); | ||
|  | 				break; | ||
|  | 			case NON_PLL_CLOCK: | ||
|  | 				{ | ||
|  | 					uint32_t sourceClock = 0; | ||
|  | 
 | ||
|  | 					if (pDependentClock == (uint32_t *) &pChipcHw->ACLKClock) { | ||
|  | 						sourceClock = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS); | ||
|  | 					} else { | ||
|  | 						uint32_t div = *pDependentClock & chipcHw_REG_DIV_CLOCK_DIV_MASK; | ||
|  | 						sourceClock = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, ((div) ? div : 256)); | ||
|  | 					} | ||
|  | 					divider = chipcHw_divide(sourceClock, freq); | ||
|  | 				} | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} else { | ||
|  | 			divider = chipcHw_divide(chipcHw_XTAL_FREQ_Hz, freq); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (divider) { | ||
|  | 			REG_LOCAL_IRQ_SAVE; | ||
|  | 			/* Set the divider to obtain the required frequency */ | ||
|  | 			*pClockCtrl = (*pClockCtrl & (~chipcHw_REG_DIV_CLOCK_DIV_MASK)) | (((divider > 256) ? chipcHw_REG_DIV_CLOCK_DIV_256 : divider) & chipcHw_REG_DIV_CLOCK_DIV_MASK); | ||
|  | 			REG_LOCAL_IRQ_RESTORE; | ||
|  | 			return freq; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 | ||
|  | EXPORT_SYMBOL(chipcHw_setClockFrequency); | ||
|  | 
 | ||
|  | /****************************************************************************/ | ||
|  | /**
 | ||
|  | *  @brief   Set VPM clock in sync with BUS clock for Chip Rev #A0 | ||
|  | * | ||
|  | *  This function does the phase adjustment between VPM and BUS clock | ||
|  | * | ||
|  | *  @return >= 0 : On success (# of adjustment required) | ||
|  | *            -1 : On failure | ||
|  | * | ||
|  | */ | ||
|  | /****************************************************************************/ | ||
|  | static int vpmPhaseAlignA0(void) | ||
|  | { | ||
|  | 	uint32_t phaseControl; | ||
|  | 	uint32_t phaseValue; | ||
|  | 	uint32_t prevPhaseComp; | ||
|  | 	int iter = 0; | ||
|  | 	int adjustCount = 0; | ||
|  | 	int count = 0; | ||
|  | 
 | ||
|  | 	for (iter = 0; (iter < MAX_PHASE_ALIGN_ATTEMPTS) && (adjustCount < MAX_PHASE_ADJUST_COUNT); iter++) { | ||
|  | 		phaseControl = (pChipcHw->VPMClock & chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT; | ||
|  | 		phaseValue = 0; | ||
|  | 		prevPhaseComp = 0; | ||
|  | 
 | ||
|  | 		/* Step 1: Look for falling PH_COMP transition */ | ||
|  | 
 | ||
|  | 		/* Read the contents of VPM Clock resgister */ | ||
|  | 		phaseValue = pChipcHw->VPMClock; | ||
|  | 		do { | ||
|  | 			/* Store previous value of phase comparator */ | ||
|  | 			prevPhaseComp = phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP; | ||
|  | 			/* Change the value of PH_CTRL. */ | ||
|  | 			reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); | ||
|  | 			/* Wait atleast 20 ns */ | ||
|  | 			udelay(1); | ||
|  | 			/* Toggle the LOAD_CH after phase control is written. */ | ||
|  | 			pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; | ||
|  | 			/* Read the contents of  VPM Clock resgister. */ | ||
|  | 			phaseValue = pChipcHw->VPMClock; | ||
|  | 
 | ||
|  | 			if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) { | ||
|  | 				phaseControl = (0x3F & (phaseControl - 1)); | ||
|  | 			} else { | ||
|  | 				/* Increment to the Phase count value for next write, if Phase is not stable. */ | ||
|  | 				phaseControl = (0x3F & (phaseControl + 1)); | ||
|  | 			} | ||
|  | 			/* Count number of adjustment made */ | ||
|  | 			adjustCount++; | ||
|  | 		} while (((prevPhaseComp == (phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP)) ||	/* Look for a transition */ | ||
|  | 			  ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) != 0x0)) &&	/* Look for a falling edge */ | ||
|  | 			 (adjustCount < MAX_PHASE_ADJUST_COUNT)	/* Do not exceed the limit while trying */ | ||
|  | 		    ); | ||
|  | 
 | ||
|  | 		if (adjustCount >= MAX_PHASE_ADJUST_COUNT) { | ||
|  | 			/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */ | ||
|  | 			return -1; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		/* Step 2: Keep moving forward to make sure falling PH_COMP transition was valid */ | ||
|  | 
 | ||
|  | 		for (count = 0; (count < 5) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) { | ||
|  | 			phaseControl = (0x3F & (phaseControl + 1)); | ||
|  | 			reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); | ||
|  | 			/* Wait atleast 20 ns */ | ||
|  | 			udelay(1); | ||
|  | 			/* Toggle the LOAD_CH after phase control is written. */ | ||
|  | 			pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; | ||
|  | 			phaseValue = pChipcHw->VPMClock; | ||
|  | 			/* Count number of adjustment made */ | ||
|  | 			adjustCount++; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (adjustCount >= MAX_PHASE_ADJUST_COUNT) { | ||
|  | 			/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */ | ||
|  | 			return -1; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (count != 5) { | ||
|  | 			/* Detected false transition */ | ||
|  | 			continue; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		/* Step 3: Keep moving backward to make sure falling PH_COMP transition was stable */ | ||
|  | 
 | ||
|  | 		for (count = 0; (count < 3) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) { | ||
|  | 			phaseControl = (0x3F & (phaseControl - 1)); | ||
|  | 			reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); | ||
|  | 			/* Wait atleast 20 ns */ | ||
|  | 			udelay(1); | ||
|  | 			/* Toggle the LOAD_CH after phase control is written. */ | ||
|  | 			pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; | ||
|  | 			phaseValue = pChipcHw->VPMClock; | ||
|  | 			/* Count number of adjustment made */ | ||
|  | 			adjustCount++; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (adjustCount >= MAX_PHASE_ADJUST_COUNT) { | ||
|  | 			/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */ | ||
|  | 			return -1; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (count != 3) { | ||
|  | 			/* Detected noisy transition */ | ||
|  | 			continue; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		/* Step 4: Keep moving backward before the original transition took place. */ | ||
|  | 
 | ||
|  | 		for (count = 0; (count < 5); count++) { | ||
|  | 			phaseControl = (0x3F & (phaseControl - 1)); | ||
|  | 			reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); | ||
|  | 			/* Wait atleast 20 ns */ | ||
|  | 			udelay(1); | ||
|  | 			/* Toggle the LOAD_CH after phase control is written. */ | ||
|  | 			pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; | ||
|  | 			phaseValue = pChipcHw->VPMClock; | ||
|  | 			/* Count number of adjustment made */ | ||
|  | 			adjustCount++; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (adjustCount >= MAX_PHASE_ADJUST_COUNT) { | ||
|  | 			/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */ | ||
|  | 			return -1; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0) { | ||
|  | 			/* Detected false transition */ | ||
|  | 			continue; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		/* Step 5: Re discover the valid transition */ | ||
|  | 
 | ||
|  | 		do { | ||
|  | 			/* Store previous value of phase comparator */ | ||
|  | 			prevPhaseComp = phaseValue; | ||
|  | 			/* Change the value of PH_CTRL. */ | ||
|  | 			reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); | ||
|  | 			/* Wait atleast 20 ns */ | ||
|  | 			udelay(1); | ||
|  | 			/* Toggle the LOAD_CH after phase control is written. */ | ||
|  | 			pChipcHw->VPMClock ^= | ||
|  | 			    chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; | ||
|  | 			/* Read the contents of  VPM Clock resgister. */ | ||
|  | 			phaseValue = pChipcHw->VPMClock; | ||
|  | 
 | ||
|  | 			if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) { | ||
|  | 				phaseControl = (0x3F & (phaseControl - 1)); | ||
|  | 			} else { | ||
|  | 				/* Increment to the Phase count value for next write, if Phase is not stable. */ | ||
|  | 				phaseControl = (0x3F & (phaseControl + 1)); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			/* Count number of adjustment made */ | ||
|  | 			adjustCount++; | ||
|  | 		} while (((prevPhaseComp == (phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP)) || ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) != 0x0)) && (adjustCount < MAX_PHASE_ADJUST_COUNT)); | ||
|  | 
 | ||
|  | 		if (adjustCount >= MAX_PHASE_ADJUST_COUNT) { | ||
|  | 			/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries  */ | ||
|  | 			return -1; | ||
|  | 		} else { | ||
|  | 			/* Valid phase must have detected */ | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* For VPM Phase should be perfectly aligned. */ | ||
|  | 	phaseControl = (((pChipcHw->VPMClock >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT) - 1) & 0x3F); | ||
|  | 	{ | ||
|  | 		REG_LOCAL_IRQ_SAVE; | ||
|  | 
 | ||
|  | 		pChipcHw->VPMClock = (pChipcHw->VPMClock & ~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT); | ||
|  | 		/* Load new phase value */ | ||
|  | 		pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; | ||
|  | 
 | ||
|  | 		REG_LOCAL_IRQ_RESTORE; | ||
|  | 	} | ||
|  | 	/* Return the status */ | ||
|  | 	return (int)adjustCount; | ||
|  | } | ||
|  | 
 | ||
|  | /****************************************************************************/ | ||
|  | /**
 | ||
|  | *  @brief   Set VPM clock in sync with BUS clock | ||
|  | * | ||
|  | *  This function does the phase adjustment between VPM and BUS clock | ||
|  | * | ||
|  | *  @return >= 0 : On success (# of adjustment required) | ||
|  | *            -1 : On failure | ||
|  | * | ||
|  | */ | ||
|  | /****************************************************************************/ | ||
|  | int chipcHw_vpmPhaseAlign(void) | ||
|  | { | ||
|  | 
 | ||
|  | 	if (chipcHw_getChipRevisionNumber() == chipcHw_REV_NUMBER_A0) { | ||
|  | 		return vpmPhaseAlignA0(); | ||
|  | 	} else { | ||
|  | 		uint32_t phaseControl = chipcHw_getVpmPhaseControl(); | ||
|  | 		uint32_t phaseValue = 0; | ||
|  | 		int adjustCount = 0; | ||
|  | 
 | ||
|  | 		/* Disable VPM access */ | ||
|  | 		pChipcHw->Spare1 &= ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE; | ||
|  | 		/* Disable HW VPM phase alignment  */ | ||
|  | 		chipcHw_vpmHwPhaseAlignDisable(); | ||
|  | 		/* Enable SW VPM phase alignment  */ | ||
|  | 		chipcHw_vpmSwPhaseAlignEnable(); | ||
|  | 		/* Adjust VPM phase */ | ||
|  | 		while (adjustCount < MAX_PHASE_ADJUST_COUNT) { | ||
|  | 			phaseValue = chipcHw_getVpmHwPhaseAlignStatus(); | ||
|  | 
 | ||
|  | 			/* Adjust phase control value */ | ||
|  | 			if (phaseValue > 0xF) { | ||
|  | 				/* Increment phase control value */ | ||
|  | 				phaseControl++; | ||
|  | 			} else if (phaseValue < 0xF) { | ||
|  | 				/* Decrement phase control value */ | ||
|  | 				phaseControl--; | ||
|  | 			} else { | ||
|  | 				/* Enable VPM access */ | ||
|  | 				pChipcHw->Spare1 |= chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE; | ||
|  | 				/* Return adjust count */ | ||
|  | 				return adjustCount; | ||
|  | 			} | ||
|  | 			/* Change the value of PH_CTRL. */ | ||
|  | 			reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); | ||
|  | 			/* Wait atleast 20 ns */ | ||
|  | 			udelay(1); | ||
|  | 			/* Toggle the LOAD_CH after phase control is written. */ | ||
|  | 			pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; | ||
|  | 			/* Count adjustment */ | ||
|  | 			adjustCount++; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Disable VPM access */ | ||
|  | 	pChipcHw->Spare1 &= ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE; | ||
|  | 	return -1; | ||
|  | } | ||
|  | 
 | ||
|  | /****************************************************************************/ | ||
|  | /**
 | ||
|  | *  @brief   Local Divide function | ||
|  | * | ||
|  | *  This function does the divide | ||
|  | * | ||
|  | *  @return divide value | ||
|  | * | ||
|  | */ | ||
|  | /****************************************************************************/ | ||
|  | static int chipcHw_divide(int num, int denom) | ||
|  | { | ||
|  | 	int r; | ||
|  | 	int t = 1; | ||
|  | 
 | ||
|  | 	/* Shift denom and t up to the largest value to optimize algorithm */ | ||
|  | 	/* t contains the units of each divide */ | ||
|  | 	while ((denom & 0x40000000) == 0) {	/* fails if denom=0 */ | ||
|  | 		denom = denom << 1; | ||
|  | 		t = t << 1; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Intialize the result */ | ||
|  | 	r = 0; | ||
|  | 
 | ||
|  | 	do { | ||
|  | 		/* Determine if there exists a positive remainder */ | ||
|  | 		if ((num - denom) >= 0) { | ||
|  | 			/* Accumlate t to the result and calculate a new remainder */ | ||
|  | 			num = num - denom; | ||
|  | 			r = r + t; | ||
|  | 		} | ||
|  | 		/* Continue to shift denom and shift t down to 0 */ | ||
|  | 		denom = denom >> 1; | ||
|  | 		t = t >> 1; | ||
|  | 	} while (t != 0); | ||
|  | 
 | ||
|  | 	return r; | ||
|  | } |