132 lines
		
	
	
	
		
			3.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			132 lines
		
	
	
	
		
			3.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * pid.c PID controller for testing cooling devices | ||
|  |  * | ||
|  |  * | ||
|  |  * | ||
|  |  * Copyright (C) 2012 Intel Corporation. All rights reserved. | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or | ||
|  |  * modify it under the terms of the GNU General Public License version | ||
|  |  * 2 or later as published by the Free Software Foundation. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * Author Name Jacob Pan <jacob.jun.pan@linux.intel.com> | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <unistd.h>
 | ||
|  | #include <stdio.h>
 | ||
|  | #include <stdlib.h>
 | ||
|  | #include <string.h>
 | ||
|  | #include <stdint.h>
 | ||
|  | #include <sys/types.h>
 | ||
|  | #include <dirent.h>
 | ||
|  | #include <libintl.h>
 | ||
|  | #include <ctype.h>
 | ||
|  | #include <assert.h>
 | ||
|  | #include <time.h>
 | ||
|  | #include <limits.h>
 | ||
|  | #include <math.h>
 | ||
|  | #include <sys/stat.h>
 | ||
|  | #include <syslog.h>
 | ||
|  | 
 | ||
|  | #include "tmon.h"
 | ||
|  | 
 | ||
|  | /**************************************************************************
 | ||
|  |  * PID (Proportional-Integral-Derivative) controller is commonly used in | ||
|  |  * linear control system, consider the the process. | ||
|  |  * G(s) = U(s)/E(s) | ||
|  |  * kp = proportional gain | ||
|  |  * ki = integral gain | ||
|  |  * kd = derivative gain | ||
|  |  * Ts | ||
|  |  * We use type C Alan Bradley equation which takes set point off the | ||
|  |  * output dependency in P and D term. | ||
|  |  * | ||
|  |  *   y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k] | ||
|  |  *          - 2*x[k-1]+x[k-2])/Ts | ||
|  |  * | ||
|  |  * | ||
|  |  ***********************************************************************/ | ||
|  | struct pid_params p_param; | ||
|  | /* cached data from previous loop */ | ||
|  | static double xk_1, xk_2; /* input temperature x[k-#] */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * TODO: make PID parameters tuned automatically, | ||
|  |  * 1. use CPU burn to produce open loop unit step response | ||
|  |  * 2. calculate PID based on Ziegler-Nichols rule | ||
|  |  * | ||
|  |  * add a flag for tuning PID | ||
|  |  */ | ||
|  | int init_thermal_controller(void) | ||
|  | { | ||
|  | 	int ret = 0; | ||
|  | 
 | ||
|  | 	/* init pid params */ | ||
|  | 	p_param.ts = ticktime; | ||
|  | 	/* TODO: get it from TUI tuning tab */ | ||
|  | 	p_param.kp = .36; | ||
|  | 	p_param.ki = 5.0; | ||
|  | 	p_param.kd = 0.19; | ||
|  | 
 | ||
|  | 	p_param.t_target = target_temp_user; | ||
|  | 
 | ||
|  | 	return ret; | ||
|  | } | ||
|  | 
 | ||
|  | void controller_reset(void) | ||
|  | { | ||
|  | 	/* TODO: relax control data when not over thermal limit */ | ||
|  | 	syslog(LOG_DEBUG, "TC inactive, relax p-state\n"); | ||
|  | 	p_param.y_k = 0.0; | ||
|  | 	xk_1 = 0.0; | ||
|  | 	xk_2 = 0.0; | ||
|  | 	set_ctrl_state(0); | ||
|  | } | ||
|  | 
 | ||
|  | /* To be called at time interval Ts. Type C PID controller.
 | ||
|  |  *    y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k] | ||
|  |  *          - 2*x[k-1]+x[k-2])/Ts | ||
|  |  * TODO: add low pass filter for D term | ||
|  |  */ | ||
|  | #define GUARD_BAND (2)
 | ||
|  | void controller_handler(const double xk, double *yk) | ||
|  | { | ||
|  | 	double ek; | ||
|  | 	double p_term, i_term, d_term; | ||
|  | 
 | ||
|  | 	ek = p_param.t_target - xk; /* error */ | ||
|  | 	if (ek >= 3.0) { | ||
|  | 		syslog(LOG_DEBUG, "PID: %3.1f Below set point %3.1f, stop\n", | ||
|  | 			xk, p_param.t_target); | ||
|  | 		controller_reset(); | ||
|  | 		*yk = 0.0; | ||
|  | 		return; | ||
|  | 	} | ||
|  | 	/* compute intermediate PID terms */ | ||
|  | 	p_term = -p_param.kp * (xk - xk_1); | ||
|  | 	i_term = p_param.kp * p_param.ki * p_param.ts * ek; | ||
|  | 	d_term = -p_param.kp * p_param.kd * (xk - 2 * xk_1 + xk_2) / p_param.ts; | ||
|  | 	/* compute output */ | ||
|  | 	*yk += p_term + i_term + d_term; | ||
|  | 	/* update sample data */ | ||
|  | 	xk_1 = xk; | ||
|  | 	xk_2 = xk_1; | ||
|  | 
 | ||
|  | 	/* clamp output adjustment range */ | ||
|  | 	if (*yk < -LIMIT_HIGH) | ||
|  | 		*yk = -LIMIT_HIGH; | ||
|  | 	else if (*yk > -LIMIT_LOW) | ||
|  | 		*yk = -LIMIT_LOW; | ||
|  | 
 | ||
|  | 	p_param.y_k = *yk; | ||
|  | 
 | ||
|  | 	set_ctrl_state(lround(fabs(p_param.y_k))); | ||
|  | 
 | ||
|  | } |