346 lines
		
	
	
	
		
			8.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			346 lines
		
	
	
	
		
			8.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Routines to emulate some Altivec/VMX instructions, specifically | ||
|  |  * those that can trap when given denormalized operands in Java mode. | ||
|  |  */ | ||
|  | #include <linux/kernel.h>
 | ||
|  | #include <linux/errno.h>
 | ||
|  | #include <linux/sched.h>
 | ||
|  | #include <asm/ptrace.h>
 | ||
|  | #include <asm/processor.h>
 | ||
|  | #include <asm/uaccess.h>
 | ||
|  | 
 | ||
|  | /* Functions in vector.S */ | ||
|  | extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b); | ||
|  | extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b); | ||
|  | extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); | ||
|  | extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); | ||
|  | extern void vrefp(vector128 *dst, vector128 *src); | ||
|  | extern void vrsqrtefp(vector128 *dst, vector128 *src); | ||
|  | extern void vexptep(vector128 *dst, vector128 *src); | ||
|  | 
 | ||
|  | static unsigned int exp2s[8] = { | ||
|  | 	0x800000, | ||
|  | 	0x8b95c2, | ||
|  | 	0x9837f0, | ||
|  | 	0xa5fed7, | ||
|  | 	0xb504f3, | ||
|  | 	0xc5672a, | ||
|  | 	0xd744fd, | ||
|  | 	0xeac0c7 | ||
|  | }; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Computes an estimate of 2^x.  The `s' argument is the 32-bit | ||
|  |  * single-precision floating-point representation of x. | ||
|  |  */ | ||
|  | static unsigned int eexp2(unsigned int s) | ||
|  | { | ||
|  | 	int exp, pwr; | ||
|  | 	unsigned int mant, frac; | ||
|  | 
 | ||
|  | 	/* extract exponent field from input */ | ||
|  | 	exp = ((s >> 23) & 0xff) - 127; | ||
|  | 	if (exp > 7) { | ||
|  | 		/* check for NaN input */ | ||
|  | 		if (exp == 128 && (s & 0x7fffff) != 0) | ||
|  | 			return s | 0x400000;	/* return QNaN */ | ||
|  | 		/* 2^-big = 0, 2^+big = +Inf */ | ||
|  | 		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */ | ||
|  | 	} | ||
|  | 	if (exp < -23) | ||
|  | 		return 0x3f800000;	/* 1.0 */ | ||
|  | 
 | ||
|  | 	/* convert to fixed point integer in 9.23 representation */ | ||
|  | 	pwr = (s & 0x7fffff) | 0x800000; | ||
|  | 	if (exp > 0) | ||
|  | 		pwr <<= exp; | ||
|  | 	else | ||
|  | 		pwr >>= -exp; | ||
|  | 	if (s & 0x80000000) | ||
|  | 		pwr = -pwr; | ||
|  | 
 | ||
|  | 	/* extract integer part, which becomes exponent part of result */ | ||
|  | 	exp = (pwr >> 23) + 126; | ||
|  | 	if (exp >= 254) | ||
|  | 		return 0x7f800000; | ||
|  | 	if (exp < -23) | ||
|  | 		return 0; | ||
|  | 
 | ||
|  | 	/* table lookup on top 3 bits of fraction to get mantissa */ | ||
|  | 	mant = exp2s[(pwr >> 20) & 7]; | ||
|  | 
 | ||
|  | 	/* linear interpolation using remaining 20 bits of fraction */ | ||
|  | 	asm("mulhwu %0,%1,%2" : "=r" (frac) | ||
|  | 	    : "r" (pwr << 12), "r" (0x172b83ff)); | ||
|  | 	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant)); | ||
|  | 	mant += frac; | ||
|  | 
 | ||
|  | 	if (exp >= 0) | ||
|  | 		return mant + (exp << 23); | ||
|  | 
 | ||
|  | 	/* denormalized result */ | ||
|  | 	exp = -exp; | ||
|  | 	mant += 1 << (exp - 1); | ||
|  | 	return mant >> exp; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Computes an estimate of log_2(x).  The `s' argument is the 32-bit | ||
|  |  * single-precision floating-point representation of x. | ||
|  |  */ | ||
|  | static unsigned int elog2(unsigned int s) | ||
|  | { | ||
|  | 	int exp, mant, lz, frac; | ||
|  | 
 | ||
|  | 	exp = s & 0x7f800000; | ||
|  | 	mant = s & 0x7fffff; | ||
|  | 	if (exp == 0x7f800000) {	/* Inf or NaN */ | ||
|  | 		if (mant != 0) | ||
|  | 			s |= 0x400000;	/* turn NaN into QNaN */ | ||
|  | 		return s; | ||
|  | 	} | ||
|  | 	if ((exp | mant) == 0)		/* +0 or -0 */ | ||
|  | 		return 0xff800000;	/* return -Inf */ | ||
|  | 
 | ||
|  | 	if (exp == 0) { | ||
|  | 		/* denormalized */ | ||
|  | 		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant)); | ||
|  | 		mant <<= lz - 8; | ||
|  | 		exp = (-118 - lz) << 23; | ||
|  | 	} else { | ||
|  | 		mant |= 0x800000; | ||
|  | 		exp -= 127 << 23; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */ | ||
|  | 		exp |= 0x400000;			/* 0.5 * 2^23 */ | ||
|  | 		asm("mulhwu %0,%1,%2" : "=r" (mant) | ||
|  | 		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */ | ||
|  | 	} | ||
|  | 	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */ | ||
|  | 		exp |= 0x200000;			/* 0.25 * 2^23 */ | ||
|  | 		asm("mulhwu %0,%1,%2" : "=r" (mant) | ||
|  | 		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */ | ||
|  | 	} | ||
|  | 	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */ | ||
|  | 		exp |= 0x100000;			/* 0.125 * 2^23 */ | ||
|  | 		asm("mulhwu %0,%1,%2" : "=r" (mant) | ||
|  | 		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */ | ||
|  | 	} | ||
|  | 	if (mant > 0x800000) {				/* 1.0 * 2^23 */ | ||
|  | 		/* calculate (mant - 1) * 1.381097463 */ | ||
|  | 		/* 1.381097463 == 0.125 / (2^0.125 - 1) */ | ||
|  | 		asm("mulhwu %0,%1,%2" : "=r" (frac) | ||
|  | 		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a)); | ||
|  | 		exp += frac; | ||
|  | 	} | ||
|  | 	s = exp & 0x80000000; | ||
|  | 	if (exp != 0) { | ||
|  | 		if (s) | ||
|  | 			exp = -exp; | ||
|  | 		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp)); | ||
|  | 		lz = 8 - lz; | ||
|  | 		if (lz > 0) | ||
|  | 			exp >>= lz; | ||
|  | 		else if (lz < 0) | ||
|  | 			exp <<= -lz; | ||
|  | 		s += ((lz + 126) << 23) + exp; | ||
|  | 	} | ||
|  | 	return s; | ||
|  | } | ||
|  | 
 | ||
|  | #define VSCR_SAT	1
 | ||
|  | 
 | ||
|  | static int ctsxs(unsigned int x, int scale, unsigned int *vscrp) | ||
|  | { | ||
|  | 	int exp, mant; | ||
|  | 
 | ||
|  | 	exp = (x >> 23) & 0xff; | ||
|  | 	mant = x & 0x7fffff; | ||
|  | 	if (exp == 255 && mant != 0) | ||
|  | 		return 0;		/* NaN -> 0 */ | ||
|  | 	exp = exp - 127 + scale; | ||
|  | 	if (exp < 0) | ||
|  | 		return 0;		/* round towards zero */ | ||
|  | 	if (exp >= 31) { | ||
|  | 		/* saturate, unless the result would be -2^31 */ | ||
|  | 		if (x + (scale << 23) != 0xcf000000) | ||
|  | 			*vscrp |= VSCR_SAT; | ||
|  | 		return (x & 0x80000000)? 0x80000000: 0x7fffffff; | ||
|  | 	} | ||
|  | 	mant |= 0x800000; | ||
|  | 	mant = (mant << 7) >> (30 - exp); | ||
|  | 	return (x & 0x80000000)? -mant: mant; | ||
|  | } | ||
|  | 
 | ||
|  | static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp) | ||
|  | { | ||
|  | 	int exp; | ||
|  | 	unsigned int mant; | ||
|  | 
 | ||
|  | 	exp = (x >> 23) & 0xff; | ||
|  | 	mant = x & 0x7fffff; | ||
|  | 	if (exp == 255 && mant != 0) | ||
|  | 		return 0;		/* NaN -> 0 */ | ||
|  | 	exp = exp - 127 + scale; | ||
|  | 	if (exp < 0) | ||
|  | 		return 0;		/* round towards zero */ | ||
|  | 	if (x & 0x80000000) { | ||
|  | 		/* negative => saturate to 0 */ | ||
|  | 		*vscrp |= VSCR_SAT; | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 	if (exp >= 32) { | ||
|  | 		/* saturate */ | ||
|  | 		*vscrp |= VSCR_SAT; | ||
|  | 		return 0xffffffff; | ||
|  | 	} | ||
|  | 	mant |= 0x800000; | ||
|  | 	mant = (mant << 8) >> (31 - exp); | ||
|  | 	return mant; | ||
|  | } | ||
|  | 
 | ||
|  | /* Round to floating integer, towards 0 */ | ||
|  | static unsigned int rfiz(unsigned int x) | ||
|  | { | ||
|  | 	int exp; | ||
|  | 
 | ||
|  | 	exp = ((x >> 23) & 0xff) - 127; | ||
|  | 	if (exp == 128 && (x & 0x7fffff) != 0) | ||
|  | 		return x | 0x400000;	/* NaN -> make it a QNaN */ | ||
|  | 	if (exp >= 23) | ||
|  | 		return x;		/* it's an integer already (or Inf) */ | ||
|  | 	if (exp < 0) | ||
|  | 		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */ | ||
|  | 	return x & ~(0x7fffff >> exp); | ||
|  | } | ||
|  | 
 | ||
|  | /* Round to floating integer, towards +/- Inf */ | ||
|  | static unsigned int rfii(unsigned int x) | ||
|  | { | ||
|  | 	int exp, mask; | ||
|  | 
 | ||
|  | 	exp = ((x >> 23) & 0xff) - 127; | ||
|  | 	if (exp == 128 && (x & 0x7fffff) != 0) | ||
|  | 		return x | 0x400000;	/* NaN -> make it a QNaN */ | ||
|  | 	if (exp >= 23) | ||
|  | 		return x;		/* it's an integer already (or Inf) */ | ||
|  | 	if ((x & 0x7fffffff) == 0) | ||
|  | 		return x;		/* +/-0 -> +/-0 */ | ||
|  | 	if (exp < 0) | ||
|  | 		/* 0 < |x| < 1.0 rounds to +/- 1.0 */ | ||
|  | 		return (x & 0x80000000) | 0x3f800000; | ||
|  | 	mask = 0x7fffff >> exp; | ||
|  | 	/* mantissa overflows into exponent - that's OK,
 | ||
|  | 	   it can't overflow into the sign bit */ | ||
|  | 	return (x + mask) & ~mask; | ||
|  | } | ||
|  | 
 | ||
|  | /* Round to floating integer, to nearest */ | ||
|  | static unsigned int rfin(unsigned int x) | ||
|  | { | ||
|  | 	int exp, half; | ||
|  | 
 | ||
|  | 	exp = ((x >> 23) & 0xff) - 127; | ||
|  | 	if (exp == 128 && (x & 0x7fffff) != 0) | ||
|  | 		return x | 0x400000;	/* NaN -> make it a QNaN */ | ||
|  | 	if (exp >= 23) | ||
|  | 		return x;		/* it's an integer already (or Inf) */ | ||
|  | 	if (exp < -1) | ||
|  | 		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */ | ||
|  | 	if (exp == -1) | ||
|  | 		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */ | ||
|  | 		return (x & 0x80000000) | 0x3f800000; | ||
|  | 	half = 0x400000 >> exp; | ||
|  | 	/* add 0.5 to the magnitude and chop off the fraction bits */ | ||
|  | 	return (x + half) & ~(0x7fffff >> exp); | ||
|  | } | ||
|  | 
 | ||
|  | int emulate_altivec(struct pt_regs *regs) | ||
|  | { | ||
|  | 	unsigned int instr, i; | ||
|  | 	unsigned int va, vb, vc, vd; | ||
|  | 	vector128 *vrs; | ||
|  | 
 | ||
|  | 	if (get_user(instr, (unsigned int __user *) regs->nip)) | ||
|  | 		return -EFAULT; | ||
|  | 	if ((instr >> 26) != 4) | ||
|  | 		return -EINVAL;		/* not an altivec instruction */ | ||
|  | 	vd = (instr >> 21) & 0x1f; | ||
|  | 	va = (instr >> 16) & 0x1f; | ||
|  | 	vb = (instr >> 11) & 0x1f; | ||
|  | 	vc = (instr >> 6) & 0x1f; | ||
|  | 
 | ||
|  | 	vrs = current->thread.vr; | ||
|  | 	switch (instr & 0x3f) { | ||
|  | 	case 10: | ||
|  | 		switch (vc) { | ||
|  | 		case 0:	/* vaddfp */ | ||
|  | 			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]); | ||
|  | 			break; | ||
|  | 		case 1:	/* vsubfp */ | ||
|  | 			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]); | ||
|  | 			break; | ||
|  | 		case 4:	/* vrefp */ | ||
|  | 			vrefp(&vrs[vd], &vrs[vb]); | ||
|  | 			break; | ||
|  | 		case 5:	/* vrsqrtefp */ | ||
|  | 			vrsqrtefp(&vrs[vd], &vrs[vb]); | ||
|  | 			break; | ||
|  | 		case 6:	/* vexptefp */ | ||
|  | 			for (i = 0; i < 4; ++i) | ||
|  | 				vrs[vd].u[i] = eexp2(vrs[vb].u[i]); | ||
|  | 			break; | ||
|  | 		case 7:	/* vlogefp */ | ||
|  | 			for (i = 0; i < 4; ++i) | ||
|  | 				vrs[vd].u[i] = elog2(vrs[vb].u[i]); | ||
|  | 			break; | ||
|  | 		case 8:		/* vrfin */ | ||
|  | 			for (i = 0; i < 4; ++i) | ||
|  | 				vrs[vd].u[i] = rfin(vrs[vb].u[i]); | ||
|  | 			break; | ||
|  | 		case 9:		/* vrfiz */ | ||
|  | 			for (i = 0; i < 4; ++i) | ||
|  | 				vrs[vd].u[i] = rfiz(vrs[vb].u[i]); | ||
|  | 			break; | ||
|  | 		case 10:	/* vrfip */ | ||
|  | 			for (i = 0; i < 4; ++i) { | ||
|  | 				u32 x = vrs[vb].u[i]; | ||
|  | 				x = (x & 0x80000000)? rfiz(x): rfii(x); | ||
|  | 				vrs[vd].u[i] = x; | ||
|  | 			} | ||
|  | 			break; | ||
|  | 		case 11:	/* vrfim */ | ||
|  | 			for (i = 0; i < 4; ++i) { | ||
|  | 				u32 x = vrs[vb].u[i]; | ||
|  | 				x = (x & 0x80000000)? rfii(x): rfiz(x); | ||
|  | 				vrs[vd].u[i] = x; | ||
|  | 			} | ||
|  | 			break; | ||
|  | 		case 14:	/* vctuxs */ | ||
|  | 			for (i = 0; i < 4; ++i) | ||
|  | 				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va, | ||
|  | 						¤t->thread.vscr.u[3]); | ||
|  | 			break; | ||
|  | 		case 15:	/* vctsxs */ | ||
|  | 			for (i = 0; i < 4; ++i) | ||
|  | 				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va, | ||
|  | 						¤t->thread.vscr.u[3]); | ||
|  | 			break; | ||
|  | 		default: | ||
|  | 			return -EINVAL; | ||
|  | 		} | ||
|  | 		break; | ||
|  | 	case 46:	/* vmaddfp */ | ||
|  | 		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); | ||
|  | 		break; | ||
|  | 	case 47:	/* vnmsubfp */ | ||
|  | 		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); | ||
|  | 		break; | ||
|  | 	default: | ||
|  | 		return -EINVAL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return 0; | ||
|  | } |