2656 lines
		
	
	
	
		
			78 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			2656 lines
		
	
	
	
		
			78 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Linux/PA-RISC Project (http://www.parisc-linux.org/)
 | ||
|  |  * | ||
|  |  * Floating-point emulation code | ||
|  |  *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> | ||
|  |  * | ||
|  |  *    This program is free software; you can redistribute it and/or modify | ||
|  |  *    it under the terms of the GNU General Public License as published by | ||
|  |  *    the Free Software Foundation; either version 2, or (at your option) | ||
|  |  *    any later version. | ||
|  |  * | ||
|  |  *    This program is distributed in the hope that it will be useful, | ||
|  |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  *    GNU General Public License for more details. | ||
|  |  * | ||
|  |  *    You should have received a copy of the GNU General Public License | ||
|  |  *    along with this program; if not, write to the Free Software | ||
|  |  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | ||
|  |  */ | ||
|  | /*
 | ||
|  |  * BEGIN_DESC | ||
|  |  * | ||
|  |  *  File: | ||
|  |  *	@(#)	pa/spmath/fmpyfadd.c		$Revision: 1.1 $ | ||
|  |  * | ||
|  |  *  Purpose: | ||
|  |  *	Double Floating-point Multiply Fused Add | ||
|  |  *	Double Floating-point Multiply Negate Fused Add | ||
|  |  *	Single Floating-point Multiply Fused Add | ||
|  |  *	Single Floating-point Multiply Negate Fused Add | ||
|  |  * | ||
|  |  *  External Interfaces: | ||
|  |  *	dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | ||
|  |  *	dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | ||
|  |  *	sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | ||
|  |  *	sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | ||
|  |  * | ||
|  |  *  Internal Interfaces: | ||
|  |  * | ||
|  |  *  Theory: | ||
|  |  *	<<please update with a overview of the operation of this file>> | ||
|  |  * | ||
|  |  * END_DESC | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "float.h"
 | ||
|  | #include "sgl_float.h"
 | ||
|  | #include "dbl_float.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  *  Double Floating-point Multiply Fused Add | ||
|  |  */ | ||
|  | 
 | ||
|  | int | ||
|  | dbl_fmpyfadd( | ||
|  | 	    dbl_floating_point *src1ptr, | ||
|  | 	    dbl_floating_point *src2ptr, | ||
|  | 	    dbl_floating_point *src3ptr, | ||
|  | 	    unsigned int *status, | ||
|  | 	    dbl_floating_point *dstptr) | ||
|  | { | ||
|  | 	unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; | ||
|  | 	register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; | ||
|  | 	unsigned int rightp1, rightp2, rightp3, rightp4; | ||
|  | 	unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; | ||
|  | 	register int mpy_exponent, add_exponent, count; | ||
|  | 	boolean inexact = FALSE, is_tiny = FALSE; | ||
|  | 
 | ||
|  | 	unsigned int signlessleft1, signlessright1, save; | ||
|  | 	register int result_exponent, diff_exponent; | ||
|  | 	int sign_save, jumpsize; | ||
|  | 	 | ||
|  | 	Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); | ||
|  | 	Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); | ||
|  | 	Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * set sign bit of result of multiply | ||
|  | 	 */ | ||
|  | 	if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1))  | ||
|  | 		Dbl_setnegativezerop1(resultp1);  | ||
|  | 	else Dbl_setzerop1(resultp1); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Generate multiply exponent  | ||
|  | 	 */ | ||
|  | 	mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check first operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Dbl_isinfinity_exponent(opnd1p1)) { | ||
|  | 		if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | ||
|  | 			if (Dbl_isnotnan(opnd2p1,opnd2p2) && | ||
|  | 			    Dbl_isnotnan(opnd3p1,opnd3p2)) { | ||
|  | 				if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since operands are infinity  | ||
|  | 					 * and zero  | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Dbl_makequietnan(resultp1,resultp2); | ||
|  | 					Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 				/*
 | ||
|  | 				 * Check third operand for infinity with a | ||
|  | 				 *  sign opposite of the multiply result | ||
|  | 				 */ | ||
|  | 				if (Dbl_isinfinity(opnd3p1,opnd3p2) && | ||
|  | 				    (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since attempting a magnitude | ||
|  | 					 * subtraction of infinities | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Dbl_makequietnan(resultp1,resultp2); | ||
|  | 					Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 			 	 * return infinity | ||
|  | 			 	 */ | ||
|  | 				Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | ||
|  | 				Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			/*
 | ||
|  | 		 	 * is NaN; signaling or quiet? | ||
|  | 		 	 */ | ||
|  | 			if (Dbl_isone_signaling(opnd1p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled())  | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd1p1); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is second operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Dbl_is_signalingnan(opnd2p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd2p1); | ||
|  | 				Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is third operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Dbl_is_signalingnan(opnd3p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd3p1); | ||
|  | 				Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 		 	 * return quiet NaN | ||
|  | 		 	 */ | ||
|  | 			Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check second operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Dbl_isinfinity_exponent(opnd2p1)) { | ||
|  | 		if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | ||
|  | 			if (Dbl_isnotnan(opnd3p1,opnd3p2)) { | ||
|  | 				if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since multiply operands are | ||
|  | 					 * zero & infinity | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Dbl_makequietnan(opnd2p1,opnd2p2); | ||
|  | 					Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 				 * Check third operand for infinity with a | ||
|  | 				 *  sign opposite of the multiply result | ||
|  | 				 */ | ||
|  | 				if (Dbl_isinfinity(opnd3p1,opnd3p2) && | ||
|  | 				    (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since attempting a magnitude | ||
|  | 					 * subtraction of infinities | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 				       		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				       	Set_invalidflag(); | ||
|  | 				       	Dbl_makequietnan(resultp1,resultp2); | ||
|  | 					Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 				 * return infinity | ||
|  | 				 */ | ||
|  | 				Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | ||
|  | 				Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			/*
 | ||
|  | 			 * is NaN; signaling or quiet? | ||
|  | 			 */ | ||
|  | 			if (Dbl_isone_signaling(opnd2p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 					return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd2p1); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is third operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Dbl_is_signalingnan(opnd3p1)) { | ||
|  | 			       	/* trap if INVALIDTRAP enabled */ | ||
|  | 			       	if (Is_invalidtrap_enabled()) | ||
|  | 				   		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 			       	/* make NaN quiet */ | ||
|  | 			       	Set_invalidflag(); | ||
|  | 			       	Dbl_set_quiet(opnd3p1); | ||
|  | 				Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 		       		return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * return quiet NaN | ||
|  | 			 */ | ||
|  | 			Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check third operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Dbl_isinfinity_exponent(opnd3p1)) { | ||
|  | 		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | ||
|  | 			/* return infinity */ | ||
|  | 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} else { | ||
|  | 			/*
 | ||
|  | 			 * is NaN; signaling or quiet? | ||
|  | 			 */ | ||
|  | 			if (Dbl_isone_signaling(opnd3p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 					return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd3p1); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * return quiet NaN | ||
|  |  			 */ | ||
|  | 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  |     	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Generate multiply mantissa | ||
|  | 	 */ | ||
|  | 	if (Dbl_isnotzero_exponent(opnd1p1)) { | ||
|  | 		/* set hidden bit */ | ||
|  | 		Dbl_clear_signexponent_set_hidden(opnd1p1); | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | ||
|  | 			/*
 | ||
|  | 			 * Perform the add opnd3 with zero here. | ||
|  | 			 */ | ||
|  | 			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) { | ||
|  | 					Dbl_or_signs(opnd3p1,resultp1); | ||
|  | 				} else { | ||
|  | 					Dbl_and_signs(opnd3p1,resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * Now let's check for trapped underflow case. | ||
|  | 			 */ | ||
|  | 			else if (Dbl_iszero_exponent(opnd3p1) && | ||
|  | 			         Is_underflowtrap_enabled()) { | ||
|  |                     		/* need to normalize results mantissa */ | ||
|  |                     		sign_save = Dbl_signextendedsign(opnd3p1); | ||
|  | 				result_exponent = 0; | ||
|  |                     		Dbl_leftshiftby1(opnd3p1,opnd3p2); | ||
|  |                     		Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | ||
|  |                     		Dbl_set_sign(opnd3p1,/*using*/sign_save); | ||
|  |                     		Dbl_setwrapped_exponent(opnd3p1,result_exponent, | ||
|  | 							unfl); | ||
|  |                     		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  |                     		/* inexact = FALSE */ | ||
|  |                     		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 			} | ||
|  | 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 		/* is denormalized, adjust exponent */ | ||
|  | 		Dbl_clear_signexponent(opnd1p1); | ||
|  | 		Dbl_leftshiftby1(opnd1p1,opnd1p2); | ||
|  | 		Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); | ||
|  | 	} | ||
|  | 	/* opnd2 needs to have hidden bit set with msb in hidden bit */ | ||
|  | 	if (Dbl_isnotzero_exponent(opnd2p1)) { | ||
|  | 		Dbl_clear_signexponent_set_hidden(opnd2p1); | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | ||
|  | 			/*
 | ||
|  | 			 * Perform the add opnd3 with zero here. | ||
|  | 			 */ | ||
|  | 			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) { | ||
|  | 					Dbl_or_signs(opnd3p1,resultp1); | ||
|  | 				} else { | ||
|  | 					Dbl_and_signs(opnd3p1,resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * Now let's check for trapped underflow case. | ||
|  | 			 */ | ||
|  | 			else if (Dbl_iszero_exponent(opnd3p1) && | ||
|  | 			    Is_underflowtrap_enabled()) { | ||
|  |                     		/* need to normalize results mantissa */ | ||
|  |                     		sign_save = Dbl_signextendedsign(opnd3p1); | ||
|  | 				result_exponent = 0; | ||
|  |                     		Dbl_leftshiftby1(opnd3p1,opnd3p2); | ||
|  |                     		Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | ||
|  |                     		Dbl_set_sign(opnd3p1,/*using*/sign_save); | ||
|  |                     		Dbl_setwrapped_exponent(opnd3p1,result_exponent, | ||
|  | 							unfl); | ||
|  |                     		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  |                     		/* inexact = FALSE */ | ||
|  | 				return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 			} | ||
|  | 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 		/* is denormalized; want to normalize */ | ||
|  | 		Dbl_clear_signexponent(opnd2p1); | ||
|  | 		Dbl_leftshiftby1(opnd2p1,opnd2p2); | ||
|  | 		Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Multiply the first two source mantissas together */ | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * The intermediate result will be kept in tmpres, | ||
|  | 	 * which needs enough room for 106 bits of mantissa, | ||
|  | 	 * so lets call it a Double extended. | ||
|  | 	 */ | ||
|  | 	Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * Four bits at a time are inspected in each loop, and a  | ||
|  | 	 * simple shift and add multiply algorithm is used.  | ||
|  | 	 */  | ||
|  | 	for (count = DBL_P-1; count >= 0; count -= 4) { | ||
|  | 		Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | ||
|  | 		if (Dbit28p2(opnd1p2)) { | ||
|  | 	 		/* Fourword_add should be an ADD followed by 3 ADDC's */ | ||
|  | 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,  | ||
|  | 			 opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); | ||
|  | 		} | ||
|  | 		if (Dbit29p2(opnd1p2)) { | ||
|  | 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | ||
|  | 			 opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); | ||
|  | 		} | ||
|  | 		if (Dbit30p2(opnd1p2)) { | ||
|  | 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | ||
|  | 			 opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); | ||
|  | 		} | ||
|  | 		if (Dbit31p2(opnd1p2)) { | ||
|  | 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | ||
|  | 			 opnd2p1, opnd2p2, 0, 0); | ||
|  | 		} | ||
|  | 		Dbl_rightshiftby4(opnd1p1,opnd1p2); | ||
|  | 	} | ||
|  | 	if (Is_dexthiddenoverflow(tmpresp1)) { | ||
|  | 		/* result mantissa >= 2 (mantissa overflow) */ | ||
|  | 		mpy_exponent++; | ||
|  | 		Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Restore the sign of the mpy result which was saved in resultp1. | ||
|  | 	 * The exponent will continue to be kept in mpy_exponent. | ||
|  | 	 */ | ||
|  | 	Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * No rounding is required, since the result of the multiply | ||
|  | 	 * is exact in the extended format. | ||
|  | 	 */ | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Now we are ready to perform the add portion of the operation. | ||
|  | 	 * | ||
|  | 	 * The exponents need to be kept as integers for now, since the | ||
|  | 	 * multiply result might not fit into the exponent field.  We | ||
|  | 	 * can't overflow or underflow because of this yet, since the | ||
|  | 	 * add could bring the final result back into range. | ||
|  | 	 */ | ||
|  | 	add_exponent = Dbl_exponent(opnd3p1); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Check for denormalized or zero add operand. | ||
|  | 	 */ | ||
|  | 	if (add_exponent == 0) { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | ||
|  | 			/* right is zero */ | ||
|  | 			/* Left can't be zero and must be result.
 | ||
|  | 			 * | ||
|  | 			 * The final result is now in tmpres and mpy_exponent, | ||
|  | 			 * and needs to be rounded and squeezed back into | ||
|  | 			 * double precision format from double extended. | ||
|  | 			 */ | ||
|  | 			result_exponent = mpy_exponent; | ||
|  | 			Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | ||
|  | 				resultp1,resultp2,resultp3,resultp4); | ||
|  | 			sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ | ||
|  | 			goto round; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		/* 
 | ||
|  | 		 * Neither are zeroes.   | ||
|  | 		 * Adjust exponent and normalize add operand. | ||
|  | 		 */ | ||
|  | 		sign_save = Dbl_signextendedsign(opnd3p1);	/* save sign */ | ||
|  | 		Dbl_clear_signexponent(opnd3p1); | ||
|  | 		Dbl_leftshiftby1(opnd3p1,opnd3p2); | ||
|  | 		Dbl_normalize(opnd3p1,opnd3p2,add_exponent); | ||
|  | 		Dbl_set_sign(opnd3p1,sign_save);	/* restore sign */ | ||
|  | 	} else { | ||
|  | 		Dbl_clear_exponent_set_hidden(opnd3p1); | ||
|  | 	} | ||
|  | 	/*
 | ||
|  | 	 * Copy opnd3 to the double extended variable called right. | ||
|  | 	 */ | ||
|  | 	Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * A zero "save" helps discover equal operands (for later), | ||
|  | 	 * and is used in swapping operands (if needed). | ||
|  | 	 */ | ||
|  | 	Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Compare magnitude of operands. | ||
|  | 	 */ | ||
|  | 	Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); | ||
|  | 	Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); | ||
|  | 	if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | ||
|  | 	    Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ | ||
|  | 		/*
 | ||
|  | 		 * Set the left operand to the larger one by XOR swap. | ||
|  | 		 * First finish the first word "save". | ||
|  | 		 */ | ||
|  | 		Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); | ||
|  | 		Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | ||
|  | 		Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, | ||
|  | 			rightp2,rightp3,rightp4); | ||
|  | 		/* also setup exponents used in rest of routine */ | ||
|  | 		diff_exponent = add_exponent - mpy_exponent; | ||
|  | 		result_exponent = add_exponent; | ||
|  | 	} else { | ||
|  | 		/* also setup exponents used in rest of routine */ | ||
|  | 		diff_exponent = mpy_exponent - add_exponent; | ||
|  | 		result_exponent = mpy_exponent; | ||
|  | 	} | ||
|  | 	/* Invariant: left is not smaller than right. */ | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Special case alignment of operands that would force alignment | ||
|  | 	 * beyond the extent of the extension.  A further optimization | ||
|  | 	 * could special case this but only reduces the path length for | ||
|  | 	 * this infrequent case. | ||
|  | 	 */ | ||
|  | 	if (diff_exponent > DBLEXT_THRESHOLD) { | ||
|  | 		diff_exponent = DBLEXT_THRESHOLD; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Align right operand by shifting it to the right */ | ||
|  | 	Dblext_clear_sign(rightp1); | ||
|  | 	Dblext_right_align(rightp1,rightp2,rightp3,rightp4, | ||
|  | 		/*shifted by*/diff_exponent); | ||
|  | 	 | ||
|  | 	/* Treat sum and difference of the operands separately. */ | ||
|  | 	if ((int)save < 0) { | ||
|  | 		/*
 | ||
|  | 		 * Difference of the two operands.  Overflow can occur if the | ||
|  | 		 * multiply overflowed.  A borrow can occur out of the hidden | ||
|  | 		 * bit and force a post normalization phase. | ||
|  | 		 */ | ||
|  | 		Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | ||
|  | 			rightp1,rightp2,rightp3,rightp4, | ||
|  | 			resultp1,resultp2,resultp3,resultp4); | ||
|  | 		sign_save = Dbl_signextendedsign(resultp1); | ||
|  | 		if (Dbl_iszero_hidden(resultp1)) { | ||
|  | 			/* Handle normalization */ | ||
|  | 		/* A straight foward algorithm would now shift the
 | ||
|  | 		 * result and extension left until the hidden bit | ||
|  | 		 * becomes one.  Not all of the extension bits need | ||
|  | 		 * participate in the shift.  Only the two most  | ||
|  | 		 * significant bits (round and guard) are needed. | ||
|  | 		 * If only a single shift is needed then the guard | ||
|  | 		 * bit becomes a significant low order bit and the | ||
|  | 		 * extension must participate in the rounding. | ||
|  | 		 * If more than a single shift is needed, then all | ||
|  | 		 * bits to the right of the guard bit are zeros,  | ||
|  | 		 * and the guard bit may or may not be zero. */ | ||
|  | 			Dblext_leftshiftby1(resultp1,resultp2,resultp3, | ||
|  | 				resultp4); | ||
|  | 
 | ||
|  | 			/* Need to check for a zero result.  The sign and
 | ||
|  | 			 * exponent fields have already been zeroed.  The more | ||
|  | 			 * efficient test of the full object can be used. | ||
|  | 			 */ | ||
|  | 			 if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){ | ||
|  | 				/* Must have been "x-x" or "x+(-x)". */ | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) | ||
|  | 					Dbl_setone_sign(resultp1); | ||
|  | 				Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			result_exponent--; | ||
|  | 
 | ||
|  | 			/* Look to see if normalization is finished. */ | ||
|  | 			if (Dbl_isone_hidden(resultp1)) { | ||
|  | 				/* No further normalization is needed */ | ||
|  | 				goto round; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			/* Discover first one bit to determine shift amount.
 | ||
|  | 			 * Use a modified binary search.  We have already | ||
|  | 			 * shifted the result one position right and still | ||
|  | 			 * not found a one so the remainder of the extension | ||
|  | 			 * must be zero and simplifies rounding. */ | ||
|  | 			/* Scan bytes */ | ||
|  | 			while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { | ||
|  | 				Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); | ||
|  | 				result_exponent -= 8; | ||
|  | 			} | ||
|  | 			/* Now narrow it down to the nibble */ | ||
|  | 			if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { | ||
|  | 				/* The lower nibble contains the
 | ||
|  | 				 * normalizing one */ | ||
|  | 				Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); | ||
|  | 				result_exponent -= 4; | ||
|  | 			} | ||
|  | 			/* Select case where first bit is set (already
 | ||
|  | 			 * normalized) otherwise select the proper shift. */ | ||
|  | 			jumpsize = Dbl_hiddenhigh3mantissa(resultp1); | ||
|  | 			if (jumpsize <= 7) switch(jumpsize) { | ||
|  | 			case 1: | ||
|  | 				Dblext_leftshiftby3(resultp1,resultp2,resultp3, | ||
|  | 					resultp4); | ||
|  | 				result_exponent -= 3; | ||
|  | 				break; | ||
|  | 			case 2: | ||
|  | 			case 3: | ||
|  | 				Dblext_leftshiftby2(resultp1,resultp2,resultp3, | ||
|  | 					resultp4); | ||
|  | 				result_exponent -= 2; | ||
|  | 				break; | ||
|  | 			case 4: | ||
|  | 			case 5: | ||
|  | 			case 6: | ||
|  | 			case 7: | ||
|  | 				Dblext_leftshiftby1(resultp1,resultp2,resultp3, | ||
|  | 					resultp4); | ||
|  | 				result_exponent -= 1; | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} /* end if (hidden...)... */ | ||
|  | 	/* Fall through and round */ | ||
|  | 	} /* end if (save < 0)... */ | ||
|  | 	else { | ||
|  | 		/* Add magnitudes */ | ||
|  | 		Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | ||
|  | 			rightp1,rightp2,rightp3,rightp4, | ||
|  | 			/*to*/resultp1,resultp2,resultp3,resultp4); | ||
|  | 		sign_save = Dbl_signextendedsign(resultp1); | ||
|  | 		if (Dbl_isone_hiddenoverflow(resultp1)) { | ||
|  | 	    		/* Prenormalization required. */ | ||
|  | 	    		Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, | ||
|  | 				resultp4); | ||
|  | 	    		result_exponent++; | ||
|  | 		} /* end if hiddenoverflow... */ | ||
|  | 	} /* end else ...add magnitudes... */ | ||
|  | 
 | ||
|  | 	/* Round the result.  If the extension and lower two words are
 | ||
|  | 	 * all zeros, then the result is exact.  Otherwise round in the | ||
|  | 	 * correct direction.  Underflow is possible. If a postnormalization | ||
|  | 	 * is necessary, then the mantissa is all zeros so no shift is needed. | ||
|  | 	 */ | ||
|  |   round: | ||
|  | 	if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | ||
|  | 		Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, | ||
|  | 			result_exponent,is_tiny); | ||
|  | 	} | ||
|  | 	Dbl_set_sign(resultp1,/*using*/sign_save); | ||
|  | 	if (Dblext_isnotzero_mantissap3(resultp3) ||  | ||
|  | 	    Dblext_isnotzero_mantissap4(resultp4)) { | ||
|  | 		inexact = TRUE; | ||
|  | 		switch(Rounding_mode()) { | ||
|  | 		case ROUNDNEAREST: /* The default. */ | ||
|  | 			if (Dblext_isone_highp3(resultp3)) { | ||
|  | 				/* at least 1/2 ulp */ | ||
|  | 				if (Dblext_isnotzero_low31p3(resultp3) || | ||
|  | 				    Dblext_isnotzero_mantissap4(resultp4) || | ||
|  | 				    Dblext_isone_lowp2(resultp2)) { | ||
|  | 					/* either exactly half way and odd or
 | ||
|  | 					 * more than 1/2ulp */ | ||
|  | 					Dbl_increment(resultp1,resultp2); | ||
|  | 				} | ||
|  | 			} | ||
|  | 	    		break; | ||
|  | 
 | ||
|  | 		case ROUNDPLUS: | ||
|  | 	    		if (Dbl_iszero_sign(resultp1)) { | ||
|  | 				/* Round up positive results */ | ||
|  | 				Dbl_increment(resultp1,resultp2); | ||
|  | 			} | ||
|  | 			break; | ||
|  | 	     | ||
|  | 		case ROUNDMINUS: | ||
|  | 	    		if (Dbl_isone_sign(resultp1)) { | ||
|  | 				/* Round down negative results */ | ||
|  | 				Dbl_increment(resultp1,resultp2); | ||
|  | 			} | ||
|  | 	     | ||
|  | 		case ROUNDZERO:; | ||
|  | 			/* truncate is simple */ | ||
|  | 		} /* end switch... */ | ||
|  | 		if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; | ||
|  | 	} | ||
|  | 	if (result_exponent >= DBL_INFINITY_EXPONENT) { | ||
|  |                 /* trap if OVERFLOWTRAP enabled */ | ||
|  |                 if (Is_overflowtrap_enabled()) { | ||
|  |                         /*
 | ||
|  |                          * Adjust bias of result | ||
|  |                          */ | ||
|  |                         Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); | ||
|  |                         Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  |                         if (inexact) | ||
|  |                             if (Is_inexacttrap_enabled()) | ||
|  |                                 return (OPC_2E_OVERFLOWEXCEPTION | | ||
|  | 					OPC_2E_INEXACTEXCEPTION); | ||
|  |                             else Set_inexactflag(); | ||
|  |                         return (OPC_2E_OVERFLOWEXCEPTION); | ||
|  |                 } | ||
|  |                 inexact = TRUE; | ||
|  |                 Set_overflowflag(); | ||
|  |                 /* set result to infinity or largest number */ | ||
|  |                 Dbl_setoverflow(resultp1,resultp2); | ||
|  | 
 | ||
|  | 	} else if (result_exponent <= 0) {	/* underflow case */ | ||
|  | 		if (Is_underflowtrap_enabled()) { | ||
|  |                         /*
 | ||
|  |                          * Adjust bias of result | ||
|  |                          */ | ||
|  |                 	Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | ||
|  | 			Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  |                         if (inexact) | ||
|  |                             if (Is_inexacttrap_enabled()) | ||
|  |                                 return (OPC_2E_UNDERFLOWEXCEPTION | | ||
|  | 					OPC_2E_INEXACTEXCEPTION); | ||
|  |                             else Set_inexactflag(); | ||
|  | 	    		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 		} | ||
|  | 		else if (inexact && is_tiny) Set_underflowflag(); | ||
|  | 	} | ||
|  | 	else Dbl_set_exponent(resultp1,result_exponent); | ||
|  | 	Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 	if (inexact)  | ||
|  | 		if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | ||
|  | 		else Set_inexactflag(); | ||
|  |     	return(NOEXCEPTION); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  *  Double Floating-point Multiply Negate Fused Add | ||
|  |  */ | ||
|  | 
 | ||
|  | dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | ||
|  | 
 | ||
|  | dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; | ||
|  | unsigned int *status; | ||
|  | { | ||
|  | 	unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; | ||
|  | 	register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; | ||
|  | 	unsigned int rightp1, rightp2, rightp3, rightp4; | ||
|  | 	unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; | ||
|  | 	register int mpy_exponent, add_exponent, count; | ||
|  | 	boolean inexact = FALSE, is_tiny = FALSE; | ||
|  | 
 | ||
|  | 	unsigned int signlessleft1, signlessright1, save; | ||
|  | 	register int result_exponent, diff_exponent; | ||
|  | 	int sign_save, jumpsize; | ||
|  | 	 | ||
|  | 	Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); | ||
|  | 	Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); | ||
|  | 	Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * set sign bit of result of multiply | ||
|  | 	 */ | ||
|  | 	if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1))  | ||
|  | 		Dbl_setzerop1(resultp1); | ||
|  | 	else | ||
|  | 		Dbl_setnegativezerop1(resultp1);  | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Generate multiply exponent  | ||
|  | 	 */ | ||
|  | 	mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check first operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Dbl_isinfinity_exponent(opnd1p1)) { | ||
|  | 		if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | ||
|  | 			if (Dbl_isnotnan(opnd2p1,opnd2p2) && | ||
|  | 			    Dbl_isnotnan(opnd3p1,opnd3p2)) { | ||
|  | 				if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since operands are infinity  | ||
|  | 					 * and zero  | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Dbl_makequietnan(resultp1,resultp2); | ||
|  | 					Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 				/*
 | ||
|  | 				 * Check third operand for infinity with a | ||
|  | 				 *  sign opposite of the multiply result | ||
|  | 				 */ | ||
|  | 				if (Dbl_isinfinity(opnd3p1,opnd3p2) && | ||
|  | 				    (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since attempting a magnitude | ||
|  | 					 * subtraction of infinities | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Dbl_makequietnan(resultp1,resultp2); | ||
|  | 					Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 			 	 * return infinity | ||
|  | 			 	 */ | ||
|  | 				Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | ||
|  | 				Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			/*
 | ||
|  | 		 	 * is NaN; signaling or quiet? | ||
|  | 		 	 */ | ||
|  | 			if (Dbl_isone_signaling(opnd1p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled())  | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd1p1); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is second operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Dbl_is_signalingnan(opnd2p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd2p1); | ||
|  | 				Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is third operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Dbl_is_signalingnan(opnd3p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd3p1); | ||
|  | 				Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 		 	 * return quiet NaN | ||
|  | 		 	 */ | ||
|  | 			Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check second operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Dbl_isinfinity_exponent(opnd2p1)) { | ||
|  | 		if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | ||
|  | 			if (Dbl_isnotnan(opnd3p1,opnd3p2)) { | ||
|  | 				if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since multiply operands are | ||
|  | 					 * zero & infinity | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Dbl_makequietnan(opnd2p1,opnd2p2); | ||
|  | 					Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 				 * Check third operand for infinity with a | ||
|  | 				 *  sign opposite of the multiply result | ||
|  | 				 */ | ||
|  | 				if (Dbl_isinfinity(opnd3p1,opnd3p2) && | ||
|  | 				    (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since attempting a magnitude | ||
|  | 					 * subtraction of infinities | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 				       		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				       	Set_invalidflag(); | ||
|  | 				       	Dbl_makequietnan(resultp1,resultp2); | ||
|  | 					Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 				 * return infinity | ||
|  | 				 */ | ||
|  | 				Dbl_setinfinity_exponentmantissa(resultp1,resultp2); | ||
|  | 				Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			/*
 | ||
|  | 			 * is NaN; signaling or quiet? | ||
|  | 			 */ | ||
|  | 			if (Dbl_isone_signaling(opnd2p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 					return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd2p1); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is third operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Dbl_is_signalingnan(opnd3p1)) { | ||
|  | 			       	/* trap if INVALIDTRAP enabled */ | ||
|  | 			       	if (Is_invalidtrap_enabled()) | ||
|  | 				   		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 			       	/* make NaN quiet */ | ||
|  | 			       	Set_invalidflag(); | ||
|  | 			       	Dbl_set_quiet(opnd3p1); | ||
|  | 				Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 		       		return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * return quiet NaN | ||
|  | 			 */ | ||
|  | 			Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check third operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Dbl_isinfinity_exponent(opnd3p1)) { | ||
|  | 		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | ||
|  | 			/* return infinity */ | ||
|  | 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} else { | ||
|  | 			/*
 | ||
|  | 			 * is NaN; signaling or quiet? | ||
|  | 			 */ | ||
|  | 			if (Dbl_isone_signaling(opnd3p1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 					return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Dbl_set_quiet(opnd3p1); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * return quiet NaN | ||
|  |  			 */ | ||
|  | 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  |     	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Generate multiply mantissa | ||
|  | 	 */ | ||
|  | 	if (Dbl_isnotzero_exponent(opnd1p1)) { | ||
|  | 		/* set hidden bit */ | ||
|  | 		Dbl_clear_signexponent_set_hidden(opnd1p1); | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { | ||
|  | 			/*
 | ||
|  | 			 * Perform the add opnd3 with zero here. | ||
|  | 			 */ | ||
|  | 			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) { | ||
|  | 					Dbl_or_signs(opnd3p1,resultp1); | ||
|  | 				} else { | ||
|  | 					Dbl_and_signs(opnd3p1,resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * Now let's check for trapped underflow case. | ||
|  | 			 */ | ||
|  | 			else if (Dbl_iszero_exponent(opnd3p1) && | ||
|  | 			         Is_underflowtrap_enabled()) { | ||
|  |                     		/* need to normalize results mantissa */ | ||
|  |                     		sign_save = Dbl_signextendedsign(opnd3p1); | ||
|  | 				result_exponent = 0; | ||
|  |                     		Dbl_leftshiftby1(opnd3p1,opnd3p2); | ||
|  |                     		Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | ||
|  |                     		Dbl_set_sign(opnd3p1,/*using*/sign_save); | ||
|  |                     		Dbl_setwrapped_exponent(opnd3p1,result_exponent, | ||
|  | 							unfl); | ||
|  |                     		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  |                     		/* inexact = FALSE */ | ||
|  |                     		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 			} | ||
|  | 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 		/* is denormalized, adjust exponent */ | ||
|  | 		Dbl_clear_signexponent(opnd1p1); | ||
|  | 		Dbl_leftshiftby1(opnd1p1,opnd1p2); | ||
|  | 		Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); | ||
|  | 	} | ||
|  | 	/* opnd2 needs to have hidden bit set with msb in hidden bit */ | ||
|  | 	if (Dbl_isnotzero_exponent(opnd2p1)) { | ||
|  | 		Dbl_clear_signexponent_set_hidden(opnd2p1); | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { | ||
|  | 			/*
 | ||
|  | 			 * Perform the add opnd3 with zero here. | ||
|  | 			 */ | ||
|  | 			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) { | ||
|  | 					Dbl_or_signs(opnd3p1,resultp1); | ||
|  | 				} else { | ||
|  | 					Dbl_and_signs(opnd3p1,resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * Now let's check for trapped underflow case. | ||
|  | 			 */ | ||
|  | 			else if (Dbl_iszero_exponent(opnd3p1) && | ||
|  | 			    Is_underflowtrap_enabled()) { | ||
|  |                     		/* need to normalize results mantissa */ | ||
|  |                     		sign_save = Dbl_signextendedsign(opnd3p1); | ||
|  | 				result_exponent = 0; | ||
|  |                     		Dbl_leftshiftby1(opnd3p1,opnd3p2); | ||
|  |                     		Dbl_normalize(opnd3p1,opnd3p2,result_exponent); | ||
|  |                     		Dbl_set_sign(opnd3p1,/*using*/sign_save); | ||
|  |                     		Dbl_setwrapped_exponent(opnd3p1,result_exponent, | ||
|  | 							unfl); | ||
|  |                     		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  |                     		/* inexact = FALSE */ | ||
|  |                     		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 			} | ||
|  | 			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 		/* is denormalized; want to normalize */ | ||
|  | 		Dbl_clear_signexponent(opnd2p1); | ||
|  | 		Dbl_leftshiftby1(opnd2p1,opnd2p2); | ||
|  | 		Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Multiply the first two source mantissas together */ | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * The intermediate result will be kept in tmpres, | ||
|  | 	 * which needs enough room for 106 bits of mantissa, | ||
|  | 	 * so lets call it a Double extended. | ||
|  | 	 */ | ||
|  | 	Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * Four bits at a time are inspected in each loop, and a  | ||
|  | 	 * simple shift and add multiply algorithm is used.  | ||
|  | 	 */  | ||
|  | 	for (count = DBL_P-1; count >= 0; count -= 4) { | ||
|  | 		Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | ||
|  | 		if (Dbit28p2(opnd1p2)) { | ||
|  | 	 		/* Fourword_add should be an ADD followed by 3 ADDC's */ | ||
|  | 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,  | ||
|  | 			 opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); | ||
|  | 		} | ||
|  | 		if (Dbit29p2(opnd1p2)) { | ||
|  | 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | ||
|  | 			 opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); | ||
|  | 		} | ||
|  | 		if (Dbit30p2(opnd1p2)) { | ||
|  | 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | ||
|  | 			 opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); | ||
|  | 		} | ||
|  | 		if (Dbit31p2(opnd1p2)) { | ||
|  | 			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, | ||
|  | 			 opnd2p1, opnd2p2, 0, 0); | ||
|  | 		} | ||
|  | 		Dbl_rightshiftby4(opnd1p1,opnd1p2); | ||
|  | 	} | ||
|  | 	if (Is_dexthiddenoverflow(tmpresp1)) { | ||
|  | 		/* result mantissa >= 2 (mantissa overflow) */ | ||
|  | 		mpy_exponent++; | ||
|  | 		Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Restore the sign of the mpy result which was saved in resultp1. | ||
|  | 	 * The exponent will continue to be kept in mpy_exponent. | ||
|  | 	 */ | ||
|  | 	Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * No rounding is required, since the result of the multiply | ||
|  | 	 * is exact in the extended format. | ||
|  | 	 */ | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Now we are ready to perform the add portion of the operation. | ||
|  | 	 * | ||
|  | 	 * The exponents need to be kept as integers for now, since the | ||
|  | 	 * multiply result might not fit into the exponent field.  We | ||
|  | 	 * can't overflow or underflow because of this yet, since the | ||
|  | 	 * add could bring the final result back into range. | ||
|  | 	 */ | ||
|  | 	add_exponent = Dbl_exponent(opnd3p1); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Check for denormalized or zero add operand. | ||
|  | 	 */ | ||
|  | 	if (add_exponent == 0) { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { | ||
|  | 			/* right is zero */ | ||
|  | 			/* Left can't be zero and must be result.
 | ||
|  | 			 * | ||
|  | 			 * The final result is now in tmpres and mpy_exponent, | ||
|  | 			 * and needs to be rounded and squeezed back into | ||
|  | 			 * double precision format from double extended. | ||
|  | 			 */ | ||
|  | 			result_exponent = mpy_exponent; | ||
|  | 			Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | ||
|  | 				resultp1,resultp2,resultp3,resultp4); | ||
|  | 			sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ | ||
|  | 			goto round; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		/* 
 | ||
|  | 		 * Neither are zeroes.   | ||
|  | 		 * Adjust exponent and normalize add operand. | ||
|  | 		 */ | ||
|  | 		sign_save = Dbl_signextendedsign(opnd3p1);	/* save sign */ | ||
|  | 		Dbl_clear_signexponent(opnd3p1); | ||
|  | 		Dbl_leftshiftby1(opnd3p1,opnd3p2); | ||
|  | 		Dbl_normalize(opnd3p1,opnd3p2,add_exponent); | ||
|  | 		Dbl_set_sign(opnd3p1,sign_save);	/* restore sign */ | ||
|  | 	} else { | ||
|  | 		Dbl_clear_exponent_set_hidden(opnd3p1); | ||
|  | 	} | ||
|  | 	/*
 | ||
|  | 	 * Copy opnd3 to the double extended variable called right. | ||
|  | 	 */ | ||
|  | 	Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * A zero "save" helps discover equal operands (for later), | ||
|  | 	 * and is used in swapping operands (if needed). | ||
|  | 	 */ | ||
|  | 	Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Compare magnitude of operands. | ||
|  | 	 */ | ||
|  | 	Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); | ||
|  | 	Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); | ||
|  | 	if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | ||
|  | 	    Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ | ||
|  | 		/*
 | ||
|  | 		 * Set the left operand to the larger one by XOR swap. | ||
|  | 		 * First finish the first word "save". | ||
|  | 		 */ | ||
|  | 		Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); | ||
|  | 		Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | ||
|  | 		Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, | ||
|  | 			rightp2,rightp3,rightp4); | ||
|  | 		/* also setup exponents used in rest of routine */ | ||
|  | 		diff_exponent = add_exponent - mpy_exponent; | ||
|  | 		result_exponent = add_exponent; | ||
|  | 	} else { | ||
|  | 		/* also setup exponents used in rest of routine */ | ||
|  | 		diff_exponent = mpy_exponent - add_exponent; | ||
|  | 		result_exponent = mpy_exponent; | ||
|  | 	} | ||
|  | 	/* Invariant: left is not smaller than right. */ | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Special case alignment of operands that would force alignment | ||
|  | 	 * beyond the extent of the extension.  A further optimization | ||
|  | 	 * could special case this but only reduces the path length for | ||
|  | 	 * this infrequent case. | ||
|  | 	 */ | ||
|  | 	if (diff_exponent > DBLEXT_THRESHOLD) { | ||
|  | 		diff_exponent = DBLEXT_THRESHOLD; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Align right operand by shifting it to the right */ | ||
|  | 	Dblext_clear_sign(rightp1); | ||
|  | 	Dblext_right_align(rightp1,rightp2,rightp3,rightp4, | ||
|  | 		/*shifted by*/diff_exponent); | ||
|  | 	 | ||
|  | 	/* Treat sum and difference of the operands separately. */ | ||
|  | 	if ((int)save < 0) { | ||
|  | 		/*
 | ||
|  | 		 * Difference of the two operands.  Overflow can occur if the | ||
|  | 		 * multiply overflowed.  A borrow can occur out of the hidden | ||
|  | 		 * bit and force a post normalization phase. | ||
|  | 		 */ | ||
|  | 		Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | ||
|  | 			rightp1,rightp2,rightp3,rightp4, | ||
|  | 			resultp1,resultp2,resultp3,resultp4); | ||
|  | 		sign_save = Dbl_signextendedsign(resultp1); | ||
|  | 		if (Dbl_iszero_hidden(resultp1)) { | ||
|  | 			/* Handle normalization */ | ||
|  | 		/* A straight foward algorithm would now shift the
 | ||
|  | 		 * result and extension left until the hidden bit | ||
|  | 		 * becomes one.  Not all of the extension bits need | ||
|  | 		 * participate in the shift.  Only the two most  | ||
|  | 		 * significant bits (round and guard) are needed. | ||
|  | 		 * If only a single shift is needed then the guard | ||
|  | 		 * bit becomes a significant low order bit and the | ||
|  | 		 * extension must participate in the rounding. | ||
|  | 		 * If more than a single shift is needed, then all | ||
|  | 		 * bits to the right of the guard bit are zeros,  | ||
|  | 		 * and the guard bit may or may not be zero. */ | ||
|  | 			Dblext_leftshiftby1(resultp1,resultp2,resultp3, | ||
|  | 				resultp4); | ||
|  | 
 | ||
|  | 			/* Need to check for a zero result.  The sign and
 | ||
|  | 			 * exponent fields have already been zeroed.  The more | ||
|  | 			 * efficient test of the full object can be used. | ||
|  | 			 */ | ||
|  | 			 if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) { | ||
|  | 				/* Must have been "x-x" or "x+(-x)". */ | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) | ||
|  | 					Dbl_setone_sign(resultp1); | ||
|  | 				Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			result_exponent--; | ||
|  | 
 | ||
|  | 			/* Look to see if normalization is finished. */ | ||
|  | 			if (Dbl_isone_hidden(resultp1)) { | ||
|  | 				/* No further normalization is needed */ | ||
|  | 				goto round; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			/* Discover first one bit to determine shift amount.
 | ||
|  | 			 * Use a modified binary search.  We have already | ||
|  | 			 * shifted the result one position right and still | ||
|  | 			 * not found a one so the remainder of the extension | ||
|  | 			 * must be zero and simplifies rounding. */ | ||
|  | 			/* Scan bytes */ | ||
|  | 			while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { | ||
|  | 				Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); | ||
|  | 				result_exponent -= 8; | ||
|  | 			} | ||
|  | 			/* Now narrow it down to the nibble */ | ||
|  | 			if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { | ||
|  | 				/* The lower nibble contains the
 | ||
|  | 				 * normalizing one */ | ||
|  | 				Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); | ||
|  | 				result_exponent -= 4; | ||
|  | 			} | ||
|  | 			/* Select case where first bit is set (already
 | ||
|  | 			 * normalized) otherwise select the proper shift. */ | ||
|  | 			jumpsize = Dbl_hiddenhigh3mantissa(resultp1); | ||
|  | 			if (jumpsize <= 7) switch(jumpsize) { | ||
|  | 			case 1: | ||
|  | 				Dblext_leftshiftby3(resultp1,resultp2,resultp3, | ||
|  | 					resultp4); | ||
|  | 				result_exponent -= 3; | ||
|  | 				break; | ||
|  | 			case 2: | ||
|  | 			case 3: | ||
|  | 				Dblext_leftshiftby2(resultp1,resultp2,resultp3, | ||
|  | 					resultp4); | ||
|  | 				result_exponent -= 2; | ||
|  | 				break; | ||
|  | 			case 4: | ||
|  | 			case 5: | ||
|  | 			case 6: | ||
|  | 			case 7: | ||
|  | 				Dblext_leftshiftby1(resultp1,resultp2,resultp3, | ||
|  | 					resultp4); | ||
|  | 				result_exponent -= 1; | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} /* end if (hidden...)... */ | ||
|  | 	/* Fall through and round */ | ||
|  | 	} /* end if (save < 0)... */ | ||
|  | 	else { | ||
|  | 		/* Add magnitudes */ | ||
|  | 		Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, | ||
|  | 			rightp1,rightp2,rightp3,rightp4, | ||
|  | 			/*to*/resultp1,resultp2,resultp3,resultp4); | ||
|  | 		sign_save = Dbl_signextendedsign(resultp1); | ||
|  | 		if (Dbl_isone_hiddenoverflow(resultp1)) { | ||
|  | 	    		/* Prenormalization required. */ | ||
|  | 	    		Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, | ||
|  | 				resultp4); | ||
|  | 	    		result_exponent++; | ||
|  | 		} /* end if hiddenoverflow... */ | ||
|  | 	} /* end else ...add magnitudes... */ | ||
|  | 
 | ||
|  | 	/* Round the result.  If the extension and lower two words are
 | ||
|  | 	 * all zeros, then the result is exact.  Otherwise round in the | ||
|  | 	 * correct direction.  Underflow is possible. If a postnormalization | ||
|  | 	 * is necessary, then the mantissa is all zeros so no shift is needed. | ||
|  | 	 */ | ||
|  |   round: | ||
|  | 	if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | ||
|  | 		Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, | ||
|  | 			result_exponent,is_tiny); | ||
|  | 	} | ||
|  | 	Dbl_set_sign(resultp1,/*using*/sign_save); | ||
|  | 	if (Dblext_isnotzero_mantissap3(resultp3) ||  | ||
|  | 	    Dblext_isnotzero_mantissap4(resultp4)) { | ||
|  | 		inexact = TRUE; | ||
|  | 		switch(Rounding_mode()) { | ||
|  | 		case ROUNDNEAREST: /* The default. */ | ||
|  | 			if (Dblext_isone_highp3(resultp3)) { | ||
|  | 				/* at least 1/2 ulp */ | ||
|  | 				if (Dblext_isnotzero_low31p3(resultp3) || | ||
|  | 				    Dblext_isnotzero_mantissap4(resultp4) || | ||
|  | 				    Dblext_isone_lowp2(resultp2)) { | ||
|  | 					/* either exactly half way and odd or
 | ||
|  | 					 * more than 1/2ulp */ | ||
|  | 					Dbl_increment(resultp1,resultp2); | ||
|  | 				} | ||
|  | 			} | ||
|  | 	    		break; | ||
|  | 
 | ||
|  | 		case ROUNDPLUS: | ||
|  | 	    		if (Dbl_iszero_sign(resultp1)) { | ||
|  | 				/* Round up positive results */ | ||
|  | 				Dbl_increment(resultp1,resultp2); | ||
|  | 			} | ||
|  | 			break; | ||
|  | 	     | ||
|  | 		case ROUNDMINUS: | ||
|  | 	    		if (Dbl_isone_sign(resultp1)) { | ||
|  | 				/* Round down negative results */ | ||
|  | 				Dbl_increment(resultp1,resultp2); | ||
|  | 			} | ||
|  | 	     | ||
|  | 		case ROUNDZERO:; | ||
|  | 			/* truncate is simple */ | ||
|  | 		} /* end switch... */ | ||
|  | 		if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; | ||
|  | 	} | ||
|  | 	if (result_exponent >= DBL_INFINITY_EXPONENT) { | ||
|  | 		/* Overflow */ | ||
|  | 		if (Is_overflowtrap_enabled()) { | ||
|  |                         /*
 | ||
|  |                          * Adjust bias of result | ||
|  |                          */ | ||
|  |                         Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); | ||
|  |                         Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  |                         if (inexact) | ||
|  |                             if (Is_inexacttrap_enabled()) | ||
|  |                                 return (OPC_2E_OVERFLOWEXCEPTION | | ||
|  | 					OPC_2E_INEXACTEXCEPTION); | ||
|  |                             else Set_inexactflag(); | ||
|  |                         return (OPC_2E_OVERFLOWEXCEPTION); | ||
|  | 		} | ||
|  | 		inexact = TRUE; | ||
|  | 		Set_overflowflag(); | ||
|  | 		Dbl_setoverflow(resultp1,resultp2); | ||
|  | 	} else if (result_exponent <= 0) {	/* underflow case */ | ||
|  | 		if (Is_underflowtrap_enabled()) { | ||
|  |                         /*
 | ||
|  |                          * Adjust bias of result | ||
|  |                          */ | ||
|  |                 	Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | ||
|  | 			Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  |                         if (inexact) | ||
|  |                             if (Is_inexacttrap_enabled()) | ||
|  |                                 return (OPC_2E_UNDERFLOWEXCEPTION | | ||
|  | 					OPC_2E_INEXACTEXCEPTION); | ||
|  |                             else Set_inexactflag(); | ||
|  | 	    		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 		} | ||
|  | 		else if (inexact && is_tiny) Set_underflowflag(); | ||
|  | 	} | ||
|  | 	else Dbl_set_exponent(resultp1,result_exponent); | ||
|  | 	Dbl_copytoptr(resultp1,resultp2,dstptr); | ||
|  | 	if (inexact)  | ||
|  | 		if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | ||
|  | 		else Set_inexactflag(); | ||
|  |     	return(NOEXCEPTION); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  *  Single Floating-point Multiply Fused Add | ||
|  |  */ | ||
|  | 
 | ||
|  | sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | ||
|  | 
 | ||
|  | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; | ||
|  | unsigned int *status; | ||
|  | { | ||
|  | 	unsigned int opnd1, opnd2, opnd3; | ||
|  | 	register unsigned int tmpresp1, tmpresp2; | ||
|  | 	unsigned int rightp1, rightp2; | ||
|  | 	unsigned int resultp1, resultp2 = 0; | ||
|  | 	register int mpy_exponent, add_exponent, count; | ||
|  | 	boolean inexact = FALSE, is_tiny = FALSE; | ||
|  | 
 | ||
|  | 	unsigned int signlessleft1, signlessright1, save; | ||
|  | 	register int result_exponent, diff_exponent; | ||
|  | 	int sign_save, jumpsize; | ||
|  | 	 | ||
|  | 	Sgl_copyfromptr(src1ptr,opnd1); | ||
|  | 	Sgl_copyfromptr(src2ptr,opnd2); | ||
|  | 	Sgl_copyfromptr(src3ptr,opnd3); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * set sign bit of result of multiply | ||
|  | 	 */ | ||
|  | 	if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2))  | ||
|  | 		Sgl_setnegativezero(resultp1);  | ||
|  | 	else Sgl_setzero(resultp1); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Generate multiply exponent  | ||
|  | 	 */ | ||
|  | 	mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check first operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Sgl_isinfinity_exponent(opnd1)) { | ||
|  | 		if (Sgl_iszero_mantissa(opnd1)) { | ||
|  | 			if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { | ||
|  | 				if (Sgl_iszero_exponentmantissa(opnd2)) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since operands are infinity  | ||
|  | 					 * and zero  | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Sgl_makequietnan(resultp1); | ||
|  | 					Sgl_copytoptr(resultp1,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 				/*
 | ||
|  | 				 * Check third operand for infinity with a | ||
|  | 				 *  sign opposite of the multiply result | ||
|  | 				 */ | ||
|  | 				if (Sgl_isinfinity(opnd3) && | ||
|  | 				    (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since attempting a magnitude | ||
|  | 					 * subtraction of infinities | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Sgl_makequietnan(resultp1); | ||
|  | 					Sgl_copytoptr(resultp1,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 			 	 * return infinity | ||
|  | 			 	 */ | ||
|  | 				Sgl_setinfinity_exponentmantissa(resultp1); | ||
|  | 				Sgl_copytoptr(resultp1,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			/*
 | ||
|  | 		 	 * is NaN; signaling or quiet? | ||
|  | 		 	 */ | ||
|  | 			if (Sgl_isone_signaling(opnd1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled())  | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd1); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is second operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Sgl_is_signalingnan(opnd2)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd2); | ||
|  | 				Sgl_copytoptr(opnd2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is third operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Sgl_is_signalingnan(opnd3)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd3); | ||
|  | 				Sgl_copytoptr(opnd3,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 		 	 * return quiet NaN | ||
|  | 		 	 */ | ||
|  | 			Sgl_copytoptr(opnd1,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check second operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Sgl_isinfinity_exponent(opnd2)) { | ||
|  | 		if (Sgl_iszero_mantissa(opnd2)) { | ||
|  | 			if (Sgl_isnotnan(opnd3)) { | ||
|  | 				if (Sgl_iszero_exponentmantissa(opnd1)) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since multiply operands are | ||
|  | 					 * zero & infinity | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Sgl_makequietnan(opnd2); | ||
|  | 					Sgl_copytoptr(opnd2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 				 * Check third operand for infinity with a | ||
|  | 				 *  sign opposite of the multiply result | ||
|  | 				 */ | ||
|  | 				if (Sgl_isinfinity(opnd3) && | ||
|  | 				    (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since attempting a magnitude | ||
|  | 					 * subtraction of infinities | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 				       		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				       	Set_invalidflag(); | ||
|  | 				       	Sgl_makequietnan(resultp1); | ||
|  | 					Sgl_copytoptr(resultp1,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 				 * return infinity | ||
|  | 				 */ | ||
|  | 				Sgl_setinfinity_exponentmantissa(resultp1); | ||
|  | 				Sgl_copytoptr(resultp1,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			/*
 | ||
|  | 			 * is NaN; signaling or quiet? | ||
|  | 			 */ | ||
|  | 			if (Sgl_isone_signaling(opnd2)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 					return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd2); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is third operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Sgl_is_signalingnan(opnd3)) { | ||
|  | 			       	/* trap if INVALIDTRAP enabled */ | ||
|  | 			       	if (Is_invalidtrap_enabled()) | ||
|  | 				   		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 			       	/* make NaN quiet */ | ||
|  | 			       	Set_invalidflag(); | ||
|  | 			       	Sgl_set_quiet(opnd3); | ||
|  | 				Sgl_copytoptr(opnd3,dstptr); | ||
|  | 		       		return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * return quiet NaN | ||
|  | 			 */ | ||
|  | 			Sgl_copytoptr(opnd2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check third operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Sgl_isinfinity_exponent(opnd3)) { | ||
|  | 		if (Sgl_iszero_mantissa(opnd3)) { | ||
|  | 			/* return infinity */ | ||
|  | 			Sgl_copytoptr(opnd3,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} else { | ||
|  | 			/*
 | ||
|  | 			 * is NaN; signaling or quiet? | ||
|  | 			 */ | ||
|  | 			if (Sgl_isone_signaling(opnd3)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 					return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd3); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * return quiet NaN | ||
|  |  			 */ | ||
|  | 			Sgl_copytoptr(opnd3,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  |     	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Generate multiply mantissa | ||
|  | 	 */ | ||
|  | 	if (Sgl_isnotzero_exponent(opnd1)) { | ||
|  | 		/* set hidden bit */ | ||
|  | 		Sgl_clear_signexponent_set_hidden(opnd1); | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Sgl_iszero_mantissa(opnd1)) { | ||
|  | 			/*
 | ||
|  | 			 * Perform the add opnd3 with zero here. | ||
|  | 			 */ | ||
|  | 			if (Sgl_iszero_exponentmantissa(opnd3)) { | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) { | ||
|  | 					Sgl_or_signs(opnd3,resultp1); | ||
|  | 				} else { | ||
|  | 					Sgl_and_signs(opnd3,resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * Now let's check for trapped underflow case. | ||
|  | 			 */ | ||
|  | 			else if (Sgl_iszero_exponent(opnd3) && | ||
|  | 			         Is_underflowtrap_enabled()) { | ||
|  |                     		/* need to normalize results mantissa */ | ||
|  |                     		sign_save = Sgl_signextendedsign(opnd3); | ||
|  | 				result_exponent = 0; | ||
|  |                     		Sgl_leftshiftby1(opnd3); | ||
|  |                     		Sgl_normalize(opnd3,result_exponent); | ||
|  |                     		Sgl_set_sign(opnd3,/*using*/sign_save); | ||
|  |                     		Sgl_setwrapped_exponent(opnd3,result_exponent, | ||
|  | 							unfl); | ||
|  |                     		Sgl_copytoptr(opnd3,dstptr); | ||
|  |                     		/* inexact = FALSE */ | ||
|  |                     		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 			} | ||
|  | 			Sgl_copytoptr(opnd3,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 		/* is denormalized, adjust exponent */ | ||
|  | 		Sgl_clear_signexponent(opnd1); | ||
|  | 		Sgl_leftshiftby1(opnd1); | ||
|  | 		Sgl_normalize(opnd1,mpy_exponent); | ||
|  | 	} | ||
|  | 	/* opnd2 needs to have hidden bit set with msb in hidden bit */ | ||
|  | 	if (Sgl_isnotzero_exponent(opnd2)) { | ||
|  | 		Sgl_clear_signexponent_set_hidden(opnd2); | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Sgl_iszero_mantissa(opnd2)) { | ||
|  | 			/*
 | ||
|  | 			 * Perform the add opnd3 with zero here. | ||
|  | 			 */ | ||
|  | 			if (Sgl_iszero_exponentmantissa(opnd3)) { | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) { | ||
|  | 					Sgl_or_signs(opnd3,resultp1); | ||
|  | 				} else { | ||
|  | 					Sgl_and_signs(opnd3,resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * Now let's check for trapped underflow case. | ||
|  | 			 */ | ||
|  | 			else if (Sgl_iszero_exponent(opnd3) && | ||
|  | 			    Is_underflowtrap_enabled()) { | ||
|  |                     		/* need to normalize results mantissa */ | ||
|  |                     		sign_save = Sgl_signextendedsign(opnd3); | ||
|  | 				result_exponent = 0; | ||
|  |                     		Sgl_leftshiftby1(opnd3); | ||
|  |                     		Sgl_normalize(opnd3,result_exponent); | ||
|  |                     		Sgl_set_sign(opnd3,/*using*/sign_save); | ||
|  |                     		Sgl_setwrapped_exponent(opnd3,result_exponent, | ||
|  | 							unfl); | ||
|  |                     		Sgl_copytoptr(opnd3,dstptr); | ||
|  |                     		/* inexact = FALSE */ | ||
|  |                     		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 			} | ||
|  | 			Sgl_copytoptr(opnd3,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 		/* is denormalized; want to normalize */ | ||
|  | 		Sgl_clear_signexponent(opnd2); | ||
|  | 		Sgl_leftshiftby1(opnd2); | ||
|  | 		Sgl_normalize(opnd2,mpy_exponent); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Multiply the first two source mantissas together */ | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * The intermediate result will be kept in tmpres, | ||
|  | 	 * which needs enough room for 106 bits of mantissa, | ||
|  | 	 * so lets call it a Double extended. | ||
|  | 	 */ | ||
|  | 	Sglext_setzero(tmpresp1,tmpresp2); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * Four bits at a time are inspected in each loop, and a  | ||
|  | 	 * simple shift and add multiply algorithm is used.  | ||
|  | 	 */  | ||
|  | 	for (count = SGL_P-1; count >= 0; count -= 4) { | ||
|  | 		Sglext_rightshiftby4(tmpresp1,tmpresp2); | ||
|  | 		if (Sbit28(opnd1)) { | ||
|  | 	 		/* Twoword_add should be an ADD followed by 2 ADDC's */ | ||
|  | 			Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); | ||
|  | 		} | ||
|  | 		if (Sbit29(opnd1)) { | ||
|  | 			Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); | ||
|  | 		} | ||
|  | 		if (Sbit30(opnd1)) { | ||
|  | 			Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); | ||
|  | 		} | ||
|  | 		if (Sbit31(opnd1)) { | ||
|  | 			Twoword_add(tmpresp1, tmpresp2, opnd2, 0); | ||
|  | 		} | ||
|  | 		Sgl_rightshiftby4(opnd1); | ||
|  | 	} | ||
|  | 	if (Is_sexthiddenoverflow(tmpresp1)) { | ||
|  | 		/* result mantissa >= 2 (mantissa overflow) */ | ||
|  | 		mpy_exponent++; | ||
|  | 		Sglext_rightshiftby4(tmpresp1,tmpresp2); | ||
|  | 	} else { | ||
|  | 		Sglext_rightshiftby3(tmpresp1,tmpresp2); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Restore the sign of the mpy result which was saved in resultp1. | ||
|  | 	 * The exponent will continue to be kept in mpy_exponent. | ||
|  | 	 */ | ||
|  | 	Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * No rounding is required, since the result of the multiply | ||
|  | 	 * is exact in the extended format. | ||
|  | 	 */ | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Now we are ready to perform the add portion of the operation. | ||
|  | 	 * | ||
|  | 	 * The exponents need to be kept as integers for now, since the | ||
|  | 	 * multiply result might not fit into the exponent field.  We | ||
|  | 	 * can't overflow or underflow because of this yet, since the | ||
|  | 	 * add could bring the final result back into range. | ||
|  | 	 */ | ||
|  | 	add_exponent = Sgl_exponent(opnd3); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Check for denormalized or zero add operand. | ||
|  | 	 */ | ||
|  | 	if (add_exponent == 0) { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Sgl_iszero_mantissa(opnd3)) { | ||
|  | 			/* right is zero */ | ||
|  | 			/* Left can't be zero and must be result.
 | ||
|  | 			 * | ||
|  | 			 * The final result is now in tmpres and mpy_exponent, | ||
|  | 			 * and needs to be rounded and squeezed back into | ||
|  | 			 * double precision format from double extended. | ||
|  | 			 */ | ||
|  | 			result_exponent = mpy_exponent; | ||
|  | 			Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); | ||
|  | 			sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ | ||
|  | 			goto round; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		/* 
 | ||
|  | 		 * Neither are zeroes.   | ||
|  | 		 * Adjust exponent and normalize add operand. | ||
|  | 		 */ | ||
|  | 		sign_save = Sgl_signextendedsign(opnd3);	/* save sign */ | ||
|  | 		Sgl_clear_signexponent(opnd3); | ||
|  | 		Sgl_leftshiftby1(opnd3); | ||
|  | 		Sgl_normalize(opnd3,add_exponent); | ||
|  | 		Sgl_set_sign(opnd3,sign_save);		/* restore sign */ | ||
|  | 	} else { | ||
|  | 		Sgl_clear_exponent_set_hidden(opnd3); | ||
|  | 	} | ||
|  | 	/*
 | ||
|  | 	 * Copy opnd3 to the double extended variable called right. | ||
|  | 	 */ | ||
|  | 	Sgl_copyto_sglext(opnd3,rightp1,rightp2); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * A zero "save" helps discover equal operands (for later), | ||
|  | 	 * and is used in swapping operands (if needed). | ||
|  | 	 */ | ||
|  | 	Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Compare magnitude of operands. | ||
|  | 	 */ | ||
|  | 	Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); | ||
|  | 	Sglext_copytoint_exponentmantissa(rightp1,signlessright1); | ||
|  | 	if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | ||
|  | 	    Sglext_ismagnitudeless(signlessleft1,signlessright1)) { | ||
|  | 		/*
 | ||
|  | 		 * Set the left operand to the larger one by XOR swap. | ||
|  | 		 * First finish the first word "save". | ||
|  | 		 */ | ||
|  | 		Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); | ||
|  | 		Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | ||
|  | 		Sglext_swap_lower(tmpresp2,rightp2); | ||
|  | 		/* also setup exponents used in rest of routine */ | ||
|  | 		diff_exponent = add_exponent - mpy_exponent; | ||
|  | 		result_exponent = add_exponent; | ||
|  | 	} else { | ||
|  | 		/* also setup exponents used in rest of routine */ | ||
|  | 		diff_exponent = mpy_exponent - add_exponent; | ||
|  | 		result_exponent = mpy_exponent; | ||
|  | 	} | ||
|  | 	/* Invariant: left is not smaller than right. */ | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Special case alignment of operands that would force alignment | ||
|  | 	 * beyond the extent of the extension.  A further optimization | ||
|  | 	 * could special case this but only reduces the path length for | ||
|  | 	 * this infrequent case. | ||
|  | 	 */ | ||
|  | 	if (diff_exponent > SGLEXT_THRESHOLD) { | ||
|  | 		diff_exponent = SGLEXT_THRESHOLD; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Align right operand by shifting it to the right */ | ||
|  | 	Sglext_clear_sign(rightp1); | ||
|  | 	Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); | ||
|  | 	 | ||
|  | 	/* Treat sum and difference of the operands separately. */ | ||
|  | 	if ((int)save < 0) { | ||
|  | 		/*
 | ||
|  | 		 * Difference of the two operands.  Overflow can occur if the | ||
|  | 		 * multiply overflowed.  A borrow can occur out of the hidden | ||
|  | 		 * bit and force a post normalization phase. | ||
|  | 		 */ | ||
|  | 		Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, | ||
|  | 			resultp1,resultp2); | ||
|  | 		sign_save = Sgl_signextendedsign(resultp1); | ||
|  | 		if (Sgl_iszero_hidden(resultp1)) { | ||
|  | 			/* Handle normalization */ | ||
|  | 		/* A straight foward algorithm would now shift the
 | ||
|  | 		 * result and extension left until the hidden bit | ||
|  | 		 * becomes one.  Not all of the extension bits need | ||
|  | 		 * participate in the shift.  Only the two most  | ||
|  | 		 * significant bits (round and guard) are needed. | ||
|  | 		 * If only a single shift is needed then the guard | ||
|  | 		 * bit becomes a significant low order bit and the | ||
|  | 		 * extension must participate in the rounding. | ||
|  | 		 * If more than a single shift is needed, then all | ||
|  | 		 * bits to the right of the guard bit are zeros,  | ||
|  | 		 * and the guard bit may or may not be zero. */ | ||
|  | 			Sglext_leftshiftby1(resultp1,resultp2); | ||
|  | 
 | ||
|  | 			/* Need to check for a zero result.  The sign and
 | ||
|  | 			 * exponent fields have already been zeroed.  The more | ||
|  | 			 * efficient test of the full object can be used. | ||
|  | 			 */ | ||
|  | 			 if (Sglext_iszero(resultp1,resultp2)) { | ||
|  | 				/* Must have been "x-x" or "x+(-x)". */ | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) | ||
|  | 					Sgl_setone_sign(resultp1); | ||
|  | 				Sgl_copytoptr(resultp1,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			result_exponent--; | ||
|  | 
 | ||
|  | 			/* Look to see if normalization is finished. */ | ||
|  | 			if (Sgl_isone_hidden(resultp1)) { | ||
|  | 				/* No further normalization is needed */ | ||
|  | 				goto round; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			/* Discover first one bit to determine shift amount.
 | ||
|  | 			 * Use a modified binary search.  We have already | ||
|  | 			 * shifted the result one position right and still | ||
|  | 			 * not found a one so the remainder of the extension | ||
|  | 			 * must be zero and simplifies rounding. */ | ||
|  | 			/* Scan bytes */ | ||
|  | 			while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { | ||
|  | 				Sglext_leftshiftby8(resultp1,resultp2); | ||
|  | 				result_exponent -= 8; | ||
|  | 			} | ||
|  | 			/* Now narrow it down to the nibble */ | ||
|  | 			if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { | ||
|  | 				/* The lower nibble contains the
 | ||
|  | 				 * normalizing one */ | ||
|  | 				Sglext_leftshiftby4(resultp1,resultp2); | ||
|  | 				result_exponent -= 4; | ||
|  | 			} | ||
|  | 			/* Select case where first bit is set (already
 | ||
|  | 			 * normalized) otherwise select the proper shift. */ | ||
|  | 			jumpsize = Sgl_hiddenhigh3mantissa(resultp1); | ||
|  | 			if (jumpsize <= 7) switch(jumpsize) { | ||
|  | 			case 1: | ||
|  | 				Sglext_leftshiftby3(resultp1,resultp2); | ||
|  | 				result_exponent -= 3; | ||
|  | 				break; | ||
|  | 			case 2: | ||
|  | 			case 3: | ||
|  | 				Sglext_leftshiftby2(resultp1,resultp2); | ||
|  | 				result_exponent -= 2; | ||
|  | 				break; | ||
|  | 			case 4: | ||
|  | 			case 5: | ||
|  | 			case 6: | ||
|  | 			case 7: | ||
|  | 				Sglext_leftshiftby1(resultp1,resultp2); | ||
|  | 				result_exponent -= 1; | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} /* end if (hidden...)... */ | ||
|  | 	/* Fall through and round */ | ||
|  | 	} /* end if (save < 0)... */ | ||
|  | 	else { | ||
|  | 		/* Add magnitudes */ | ||
|  | 		Sglext_addition(tmpresp1,tmpresp2, | ||
|  | 			rightp1,rightp2, /*to*/resultp1,resultp2); | ||
|  | 		sign_save = Sgl_signextendedsign(resultp1); | ||
|  | 		if (Sgl_isone_hiddenoverflow(resultp1)) { | ||
|  | 	    		/* Prenormalization required. */ | ||
|  | 	    		Sglext_arithrightshiftby1(resultp1,resultp2); | ||
|  | 	    		result_exponent++; | ||
|  | 		} /* end if hiddenoverflow... */ | ||
|  | 	} /* end else ...add magnitudes... */ | ||
|  | 
 | ||
|  | 	/* Round the result.  If the extension and lower two words are
 | ||
|  | 	 * all zeros, then the result is exact.  Otherwise round in the | ||
|  | 	 * correct direction.  Underflow is possible. If a postnormalization | ||
|  | 	 * is necessary, then the mantissa is all zeros so no shift is needed. | ||
|  | 	 */ | ||
|  |   round: | ||
|  | 	if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | ||
|  | 		Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); | ||
|  | 	} | ||
|  | 	Sgl_set_sign(resultp1,/*using*/sign_save); | ||
|  | 	if (Sglext_isnotzero_mantissap2(resultp2)) { | ||
|  | 		inexact = TRUE; | ||
|  | 		switch(Rounding_mode()) { | ||
|  | 		case ROUNDNEAREST: /* The default. */ | ||
|  | 			if (Sglext_isone_highp2(resultp2)) { | ||
|  | 				/* at least 1/2 ulp */ | ||
|  | 				if (Sglext_isnotzero_low31p2(resultp2) || | ||
|  | 				    Sglext_isone_lowp1(resultp1)) { | ||
|  | 					/* either exactly half way and odd or
 | ||
|  | 					 * more than 1/2ulp */ | ||
|  | 					Sgl_increment(resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 	    		break; | ||
|  | 
 | ||
|  | 		case ROUNDPLUS: | ||
|  | 	    		if (Sgl_iszero_sign(resultp1)) { | ||
|  | 				/* Round up positive results */ | ||
|  | 				Sgl_increment(resultp1); | ||
|  | 			} | ||
|  | 			break; | ||
|  | 	     | ||
|  | 		case ROUNDMINUS: | ||
|  | 	    		if (Sgl_isone_sign(resultp1)) { | ||
|  | 				/* Round down negative results */ | ||
|  | 				Sgl_increment(resultp1); | ||
|  | 			} | ||
|  | 	     | ||
|  | 		case ROUNDZERO:; | ||
|  | 			/* truncate is simple */ | ||
|  | 		} /* end switch... */ | ||
|  | 		if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; | ||
|  | 	} | ||
|  | 	if (result_exponent >= SGL_INFINITY_EXPONENT) { | ||
|  | 		/* Overflow */ | ||
|  | 		if (Is_overflowtrap_enabled()) { | ||
|  |                         /*
 | ||
|  |                          * Adjust bias of result | ||
|  |                          */ | ||
|  |                         Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); | ||
|  |                         Sgl_copytoptr(resultp1,dstptr); | ||
|  |                         if (inexact) | ||
|  |                             if (Is_inexacttrap_enabled()) | ||
|  |                                 return (OPC_2E_OVERFLOWEXCEPTION | | ||
|  | 					OPC_2E_INEXACTEXCEPTION); | ||
|  |                             else Set_inexactflag(); | ||
|  |                         return (OPC_2E_OVERFLOWEXCEPTION); | ||
|  | 		} | ||
|  | 		inexact = TRUE; | ||
|  | 		Set_overflowflag(); | ||
|  | 		Sgl_setoverflow(resultp1); | ||
|  | 	} else if (result_exponent <= 0) {	/* underflow case */ | ||
|  | 		if (Is_underflowtrap_enabled()) { | ||
|  |                         /*
 | ||
|  |                          * Adjust bias of result | ||
|  |                          */ | ||
|  |                 	Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); | ||
|  | 			Sgl_copytoptr(resultp1,dstptr); | ||
|  |                         if (inexact) | ||
|  |                             if (Is_inexacttrap_enabled()) | ||
|  |                                 return (OPC_2E_UNDERFLOWEXCEPTION | | ||
|  | 					OPC_2E_INEXACTEXCEPTION); | ||
|  |                             else Set_inexactflag(); | ||
|  | 	    		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 		} | ||
|  | 		else if (inexact && is_tiny) Set_underflowflag(); | ||
|  | 	} | ||
|  | 	else Sgl_set_exponent(resultp1,result_exponent); | ||
|  | 	Sgl_copytoptr(resultp1,dstptr); | ||
|  | 	if (inexact)  | ||
|  | 		if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | ||
|  | 		else Set_inexactflag(); | ||
|  |     	return(NOEXCEPTION); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  *  Single Floating-point Multiply Negate Fused Add | ||
|  |  */ | ||
|  | 
 | ||
|  | sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) | ||
|  | 
 | ||
|  | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; | ||
|  | unsigned int *status; | ||
|  | { | ||
|  | 	unsigned int opnd1, opnd2, opnd3; | ||
|  | 	register unsigned int tmpresp1, tmpresp2; | ||
|  | 	unsigned int rightp1, rightp2; | ||
|  | 	unsigned int resultp1, resultp2 = 0; | ||
|  | 	register int mpy_exponent, add_exponent, count; | ||
|  | 	boolean inexact = FALSE, is_tiny = FALSE; | ||
|  | 
 | ||
|  | 	unsigned int signlessleft1, signlessright1, save; | ||
|  | 	register int result_exponent, diff_exponent; | ||
|  | 	int sign_save, jumpsize; | ||
|  | 	 | ||
|  | 	Sgl_copyfromptr(src1ptr,opnd1); | ||
|  | 	Sgl_copyfromptr(src2ptr,opnd2); | ||
|  | 	Sgl_copyfromptr(src3ptr,opnd3); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * set sign bit of result of multiply | ||
|  | 	 */ | ||
|  | 	if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2))  | ||
|  | 		Sgl_setzero(resultp1); | ||
|  | 	else  | ||
|  | 		Sgl_setnegativezero(resultp1);  | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Generate multiply exponent  | ||
|  | 	 */ | ||
|  | 	mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check first operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Sgl_isinfinity_exponent(opnd1)) { | ||
|  | 		if (Sgl_iszero_mantissa(opnd1)) { | ||
|  | 			if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { | ||
|  | 				if (Sgl_iszero_exponentmantissa(opnd2)) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since operands are infinity  | ||
|  | 					 * and zero  | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Sgl_makequietnan(resultp1); | ||
|  | 					Sgl_copytoptr(resultp1,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 				/*
 | ||
|  | 				 * Check third operand for infinity with a | ||
|  | 				 *  sign opposite of the multiply result | ||
|  | 				 */ | ||
|  | 				if (Sgl_isinfinity(opnd3) && | ||
|  | 				    (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since attempting a magnitude | ||
|  | 					 * subtraction of infinities | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Sgl_makequietnan(resultp1); | ||
|  | 					Sgl_copytoptr(resultp1,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 			 	 * return infinity | ||
|  | 			 	 */ | ||
|  | 				Sgl_setinfinity_exponentmantissa(resultp1); | ||
|  | 				Sgl_copytoptr(resultp1,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			/*
 | ||
|  | 		 	 * is NaN; signaling or quiet? | ||
|  | 		 	 */ | ||
|  | 			if (Sgl_isone_signaling(opnd1)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled())  | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd1); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is second operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Sgl_is_signalingnan(opnd2)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd2); | ||
|  | 				Sgl_copytoptr(opnd2,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is third operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Sgl_is_signalingnan(opnd3)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 			    		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd3); | ||
|  | 				Sgl_copytoptr(opnd3,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 		 	 * return quiet NaN | ||
|  | 		 	 */ | ||
|  | 			Sgl_copytoptr(opnd1,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check second operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Sgl_isinfinity_exponent(opnd2)) { | ||
|  | 		if (Sgl_iszero_mantissa(opnd2)) { | ||
|  | 			if (Sgl_isnotnan(opnd3)) { | ||
|  | 				if (Sgl_iszero_exponentmantissa(opnd1)) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since multiply operands are | ||
|  | 					 * zero & infinity | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 						return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 					Set_invalidflag(); | ||
|  | 					Sgl_makequietnan(opnd2); | ||
|  | 					Sgl_copytoptr(opnd2,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 				 * Check third operand for infinity with a | ||
|  | 				 *  sign opposite of the multiply result | ||
|  | 				 */ | ||
|  | 				if (Sgl_isinfinity(opnd3) && | ||
|  | 				    (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { | ||
|  | 					/* 
 | ||
|  | 					 * invalid since attempting a magnitude | ||
|  | 					 * subtraction of infinities | ||
|  | 					 */ | ||
|  | 					if (Is_invalidtrap_enabled()) | ||
|  | 				       		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				       	Set_invalidflag(); | ||
|  | 				       	Sgl_makequietnan(resultp1); | ||
|  | 					Sgl_copytoptr(resultp1,dstptr); | ||
|  | 					return(NOEXCEPTION); | ||
|  | 				} | ||
|  | 
 | ||
|  | 				/*
 | ||
|  | 				 * return infinity | ||
|  | 				 */ | ||
|  | 				Sgl_setinfinity_exponentmantissa(resultp1); | ||
|  | 				Sgl_copytoptr(resultp1,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else { | ||
|  | 			/*
 | ||
|  | 			 * is NaN; signaling or quiet? | ||
|  | 			 */ | ||
|  | 			if (Sgl_isone_signaling(opnd2)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 					return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd2); | ||
|  | 			} | ||
|  | 			/* 
 | ||
|  | 			 * is third operand a signaling NaN?  | ||
|  | 			 */ | ||
|  | 			else if (Sgl_is_signalingnan(opnd3)) { | ||
|  | 			       	/* trap if INVALIDTRAP enabled */ | ||
|  | 			       	if (Is_invalidtrap_enabled()) | ||
|  | 				   		return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 			       	/* make NaN quiet */ | ||
|  | 			       	Set_invalidflag(); | ||
|  | 			       	Sgl_set_quiet(opnd3); | ||
|  | 				Sgl_copytoptr(opnd3,dstptr); | ||
|  | 		       		return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * return quiet NaN | ||
|  | 			 */ | ||
|  | 			Sgl_copytoptr(opnd2,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * check third operand for NaN's or infinity | ||
|  | 	 */ | ||
|  | 	if (Sgl_isinfinity_exponent(opnd3)) { | ||
|  | 		if (Sgl_iszero_mantissa(opnd3)) { | ||
|  | 			/* return infinity */ | ||
|  | 			Sgl_copytoptr(opnd3,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} else { | ||
|  | 			/*
 | ||
|  | 			 * is NaN; signaling or quiet? | ||
|  | 			 */ | ||
|  | 			if (Sgl_isone_signaling(opnd3)) { | ||
|  | 				/* trap if INVALIDTRAP enabled */ | ||
|  | 				if (Is_invalidtrap_enabled()) | ||
|  | 					return(OPC_2E_INVALIDEXCEPTION); | ||
|  | 				/* make NaN quiet */ | ||
|  | 				Set_invalidflag(); | ||
|  | 				Sgl_set_quiet(opnd3); | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * return quiet NaN | ||
|  |  			 */ | ||
|  | 			Sgl_copytoptr(opnd3,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  |     	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Generate multiply mantissa | ||
|  | 	 */ | ||
|  | 	if (Sgl_isnotzero_exponent(opnd1)) { | ||
|  | 		/* set hidden bit */ | ||
|  | 		Sgl_clear_signexponent_set_hidden(opnd1); | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Sgl_iszero_mantissa(opnd1)) { | ||
|  | 			/*
 | ||
|  | 			 * Perform the add opnd3 with zero here. | ||
|  | 			 */ | ||
|  | 			if (Sgl_iszero_exponentmantissa(opnd3)) { | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) { | ||
|  | 					Sgl_or_signs(opnd3,resultp1); | ||
|  | 				} else { | ||
|  | 					Sgl_and_signs(opnd3,resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * Now let's check for trapped underflow case. | ||
|  | 			 */ | ||
|  | 			else if (Sgl_iszero_exponent(opnd3) && | ||
|  | 			         Is_underflowtrap_enabled()) { | ||
|  |                     		/* need to normalize results mantissa */ | ||
|  |                     		sign_save = Sgl_signextendedsign(opnd3); | ||
|  | 				result_exponent = 0; | ||
|  |                     		Sgl_leftshiftby1(opnd3); | ||
|  |                     		Sgl_normalize(opnd3,result_exponent); | ||
|  |                     		Sgl_set_sign(opnd3,/*using*/sign_save); | ||
|  |                     		Sgl_setwrapped_exponent(opnd3,result_exponent, | ||
|  | 							unfl); | ||
|  |                     		Sgl_copytoptr(opnd3,dstptr); | ||
|  |                     		/* inexact = FALSE */ | ||
|  |                     		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 			} | ||
|  | 			Sgl_copytoptr(opnd3,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 		/* is denormalized, adjust exponent */ | ||
|  | 		Sgl_clear_signexponent(opnd1); | ||
|  | 		Sgl_leftshiftby1(opnd1); | ||
|  | 		Sgl_normalize(opnd1,mpy_exponent); | ||
|  | 	} | ||
|  | 	/* opnd2 needs to have hidden bit set with msb in hidden bit */ | ||
|  | 	if (Sgl_isnotzero_exponent(opnd2)) { | ||
|  | 		Sgl_clear_signexponent_set_hidden(opnd2); | ||
|  | 	} | ||
|  | 	else { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Sgl_iszero_mantissa(opnd2)) { | ||
|  | 			/*
 | ||
|  | 			 * Perform the add opnd3 with zero here. | ||
|  | 			 */ | ||
|  | 			if (Sgl_iszero_exponentmantissa(opnd3)) { | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) { | ||
|  | 					Sgl_or_signs(opnd3,resultp1); | ||
|  | 				} else { | ||
|  | 					Sgl_and_signs(opnd3,resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 			/*
 | ||
|  | 			 * Now let's check for trapped underflow case. | ||
|  | 			 */ | ||
|  | 			else if (Sgl_iszero_exponent(opnd3) && | ||
|  | 			    Is_underflowtrap_enabled()) { | ||
|  |                     		/* need to normalize results mantissa */ | ||
|  |                     		sign_save = Sgl_signextendedsign(opnd3); | ||
|  | 				result_exponent = 0; | ||
|  |                     		Sgl_leftshiftby1(opnd3); | ||
|  |                     		Sgl_normalize(opnd3,result_exponent); | ||
|  |                     		Sgl_set_sign(opnd3,/*using*/sign_save); | ||
|  |                     		Sgl_setwrapped_exponent(opnd3,result_exponent, | ||
|  | 							unfl); | ||
|  |                     		Sgl_copytoptr(opnd3,dstptr); | ||
|  |                     		/* inexact = FALSE */ | ||
|  |                     		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 			} | ||
|  | 			Sgl_copytoptr(opnd3,dstptr); | ||
|  | 			return(NOEXCEPTION); | ||
|  | 		} | ||
|  | 		/* is denormalized; want to normalize */ | ||
|  | 		Sgl_clear_signexponent(opnd2); | ||
|  | 		Sgl_leftshiftby1(opnd2); | ||
|  | 		Sgl_normalize(opnd2,mpy_exponent); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Multiply the first two source mantissas together */ | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * The intermediate result will be kept in tmpres, | ||
|  | 	 * which needs enough room for 106 bits of mantissa, | ||
|  | 	 * so lets call it a Double extended. | ||
|  | 	 */ | ||
|  | 	Sglext_setzero(tmpresp1,tmpresp2); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * Four bits at a time are inspected in each loop, and a  | ||
|  | 	 * simple shift and add multiply algorithm is used.  | ||
|  | 	 */  | ||
|  | 	for (count = SGL_P-1; count >= 0; count -= 4) { | ||
|  | 		Sglext_rightshiftby4(tmpresp1,tmpresp2); | ||
|  | 		if (Sbit28(opnd1)) { | ||
|  | 	 		/* Twoword_add should be an ADD followed by 2 ADDC's */ | ||
|  | 			Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); | ||
|  | 		} | ||
|  | 		if (Sbit29(opnd1)) { | ||
|  | 			Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); | ||
|  | 		} | ||
|  | 		if (Sbit30(opnd1)) { | ||
|  | 			Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); | ||
|  | 		} | ||
|  | 		if (Sbit31(opnd1)) { | ||
|  | 			Twoword_add(tmpresp1, tmpresp2, opnd2, 0); | ||
|  | 		} | ||
|  | 		Sgl_rightshiftby4(opnd1); | ||
|  | 	} | ||
|  | 	if (Is_sexthiddenoverflow(tmpresp1)) { | ||
|  | 		/* result mantissa >= 2 (mantissa overflow) */ | ||
|  | 		mpy_exponent++; | ||
|  | 		Sglext_rightshiftby4(tmpresp1,tmpresp2); | ||
|  | 	} else { | ||
|  | 		Sglext_rightshiftby3(tmpresp1,tmpresp2); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Restore the sign of the mpy result which was saved in resultp1. | ||
|  | 	 * The exponent will continue to be kept in mpy_exponent. | ||
|  | 	 */ | ||
|  | 	Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); | ||
|  | 
 | ||
|  | 	/* 
 | ||
|  | 	 * No rounding is required, since the result of the multiply | ||
|  | 	 * is exact in the extended format. | ||
|  | 	 */ | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Now we are ready to perform the add portion of the operation. | ||
|  | 	 * | ||
|  | 	 * The exponents need to be kept as integers for now, since the | ||
|  | 	 * multiply result might not fit into the exponent field.  We | ||
|  | 	 * can't overflow or underflow because of this yet, since the | ||
|  | 	 * add could bring the final result back into range. | ||
|  | 	 */ | ||
|  | 	add_exponent = Sgl_exponent(opnd3); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Check for denormalized or zero add operand. | ||
|  | 	 */ | ||
|  | 	if (add_exponent == 0) { | ||
|  | 		/* check for zero */ | ||
|  | 		if (Sgl_iszero_mantissa(opnd3)) { | ||
|  | 			/* right is zero */ | ||
|  | 			/* Left can't be zero and must be result.
 | ||
|  | 			 * | ||
|  | 			 * The final result is now in tmpres and mpy_exponent, | ||
|  | 			 * and needs to be rounded and squeezed back into | ||
|  | 			 * double precision format from double extended. | ||
|  | 			 */ | ||
|  | 			result_exponent = mpy_exponent; | ||
|  | 			Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); | ||
|  | 			sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ | ||
|  | 			goto round; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		/* 
 | ||
|  | 		 * Neither are zeroes.   | ||
|  | 		 * Adjust exponent and normalize add operand. | ||
|  | 		 */ | ||
|  | 		sign_save = Sgl_signextendedsign(opnd3);	/* save sign */ | ||
|  | 		Sgl_clear_signexponent(opnd3); | ||
|  | 		Sgl_leftshiftby1(opnd3); | ||
|  | 		Sgl_normalize(opnd3,add_exponent); | ||
|  | 		Sgl_set_sign(opnd3,sign_save);		/* restore sign */ | ||
|  | 	} else { | ||
|  | 		Sgl_clear_exponent_set_hidden(opnd3); | ||
|  | 	} | ||
|  | 	/*
 | ||
|  | 	 * Copy opnd3 to the double extended variable called right. | ||
|  | 	 */ | ||
|  | 	Sgl_copyto_sglext(opnd3,rightp1,rightp2); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * A zero "save" helps discover equal operands (for later), | ||
|  | 	 * and is used in swapping operands (if needed). | ||
|  | 	 */ | ||
|  | 	Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Compare magnitude of operands. | ||
|  | 	 */ | ||
|  | 	Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); | ||
|  | 	Sglext_copytoint_exponentmantissa(rightp1,signlessright1); | ||
|  | 	if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && | ||
|  | 	    Sglext_ismagnitudeless(signlessleft1,signlessright1)) { | ||
|  | 		/*
 | ||
|  | 		 * Set the left operand to the larger one by XOR swap. | ||
|  | 		 * First finish the first word "save". | ||
|  | 		 */ | ||
|  | 		Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); | ||
|  | 		Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); | ||
|  | 		Sglext_swap_lower(tmpresp2,rightp2); | ||
|  | 		/* also setup exponents used in rest of routine */ | ||
|  | 		diff_exponent = add_exponent - mpy_exponent; | ||
|  | 		result_exponent = add_exponent; | ||
|  | 	} else { | ||
|  | 		/* also setup exponents used in rest of routine */ | ||
|  | 		diff_exponent = mpy_exponent - add_exponent; | ||
|  | 		result_exponent = mpy_exponent; | ||
|  | 	} | ||
|  | 	/* Invariant: left is not smaller than right. */ | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Special case alignment of operands that would force alignment | ||
|  | 	 * beyond the extent of the extension.  A further optimization | ||
|  | 	 * could special case this but only reduces the path length for | ||
|  | 	 * this infrequent case. | ||
|  | 	 */ | ||
|  | 	if (diff_exponent > SGLEXT_THRESHOLD) { | ||
|  | 		diff_exponent = SGLEXT_THRESHOLD; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Align right operand by shifting it to the right */ | ||
|  | 	Sglext_clear_sign(rightp1); | ||
|  | 	Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); | ||
|  | 	 | ||
|  | 	/* Treat sum and difference of the operands separately. */ | ||
|  | 	if ((int)save < 0) { | ||
|  | 		/*
 | ||
|  | 		 * Difference of the two operands.  Overflow can occur if the | ||
|  | 		 * multiply overflowed.  A borrow can occur out of the hidden | ||
|  | 		 * bit and force a post normalization phase. | ||
|  | 		 */ | ||
|  | 		Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, | ||
|  | 			resultp1,resultp2); | ||
|  | 		sign_save = Sgl_signextendedsign(resultp1); | ||
|  | 		if (Sgl_iszero_hidden(resultp1)) { | ||
|  | 			/* Handle normalization */ | ||
|  | 		/* A straight foward algorithm would now shift the
 | ||
|  | 		 * result and extension left until the hidden bit | ||
|  | 		 * becomes one.  Not all of the extension bits need | ||
|  | 		 * participate in the shift.  Only the two most  | ||
|  | 		 * significant bits (round and guard) are needed. | ||
|  | 		 * If only a single shift is needed then the guard | ||
|  | 		 * bit becomes a significant low order bit and the | ||
|  | 		 * extension must participate in the rounding. | ||
|  | 		 * If more than a single shift is needed, then all | ||
|  | 		 * bits to the right of the guard bit are zeros,  | ||
|  | 		 * and the guard bit may or may not be zero. */ | ||
|  | 			Sglext_leftshiftby1(resultp1,resultp2); | ||
|  | 
 | ||
|  | 			/* Need to check for a zero result.  The sign and
 | ||
|  | 			 * exponent fields have already been zeroed.  The more | ||
|  | 			 * efficient test of the full object can be used. | ||
|  | 			 */ | ||
|  | 			 if (Sglext_iszero(resultp1,resultp2)) { | ||
|  | 				/* Must have been "x-x" or "x+(-x)". */ | ||
|  | 				if (Is_rounding_mode(ROUNDMINUS)) | ||
|  | 					Sgl_setone_sign(resultp1); | ||
|  | 				Sgl_copytoptr(resultp1,dstptr); | ||
|  | 				return(NOEXCEPTION); | ||
|  | 			} | ||
|  | 			result_exponent--; | ||
|  | 
 | ||
|  | 			/* Look to see if normalization is finished. */ | ||
|  | 			if (Sgl_isone_hidden(resultp1)) { | ||
|  | 				/* No further normalization is needed */ | ||
|  | 				goto round; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			/* Discover first one bit to determine shift amount.
 | ||
|  | 			 * Use a modified binary search.  We have already | ||
|  | 			 * shifted the result one position right and still | ||
|  | 			 * not found a one so the remainder of the extension | ||
|  | 			 * must be zero and simplifies rounding. */ | ||
|  | 			/* Scan bytes */ | ||
|  | 			while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { | ||
|  | 				Sglext_leftshiftby8(resultp1,resultp2); | ||
|  | 				result_exponent -= 8; | ||
|  | 			} | ||
|  | 			/* Now narrow it down to the nibble */ | ||
|  | 			if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { | ||
|  | 				/* The lower nibble contains the
 | ||
|  | 				 * normalizing one */ | ||
|  | 				Sglext_leftshiftby4(resultp1,resultp2); | ||
|  | 				result_exponent -= 4; | ||
|  | 			} | ||
|  | 			/* Select case where first bit is set (already
 | ||
|  | 			 * normalized) otherwise select the proper shift. */ | ||
|  | 			jumpsize = Sgl_hiddenhigh3mantissa(resultp1); | ||
|  | 			if (jumpsize <= 7) switch(jumpsize) { | ||
|  | 			case 1: | ||
|  | 				Sglext_leftshiftby3(resultp1,resultp2); | ||
|  | 				result_exponent -= 3; | ||
|  | 				break; | ||
|  | 			case 2: | ||
|  | 			case 3: | ||
|  | 				Sglext_leftshiftby2(resultp1,resultp2); | ||
|  | 				result_exponent -= 2; | ||
|  | 				break; | ||
|  | 			case 4: | ||
|  | 			case 5: | ||
|  | 			case 6: | ||
|  | 			case 7: | ||
|  | 				Sglext_leftshiftby1(resultp1,resultp2); | ||
|  | 				result_exponent -= 1; | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} /* end if (hidden...)... */ | ||
|  | 	/* Fall through and round */ | ||
|  | 	} /* end if (save < 0)... */ | ||
|  | 	else { | ||
|  | 		/* Add magnitudes */ | ||
|  | 		Sglext_addition(tmpresp1,tmpresp2, | ||
|  | 			rightp1,rightp2, /*to*/resultp1,resultp2); | ||
|  | 		sign_save = Sgl_signextendedsign(resultp1); | ||
|  | 		if (Sgl_isone_hiddenoverflow(resultp1)) { | ||
|  | 	    		/* Prenormalization required. */ | ||
|  | 	    		Sglext_arithrightshiftby1(resultp1,resultp2); | ||
|  | 	    		result_exponent++; | ||
|  | 		} /* end if hiddenoverflow... */ | ||
|  | 	} /* end else ...add magnitudes... */ | ||
|  | 
 | ||
|  | 	/* Round the result.  If the extension and lower two words are
 | ||
|  | 	 * all zeros, then the result is exact.  Otherwise round in the | ||
|  | 	 * correct direction.  Underflow is possible. If a postnormalization | ||
|  | 	 * is necessary, then the mantissa is all zeros so no shift is needed. | ||
|  | 	 */ | ||
|  |   round: | ||
|  | 	if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { | ||
|  | 		Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); | ||
|  | 	} | ||
|  | 	Sgl_set_sign(resultp1,/*using*/sign_save); | ||
|  | 	if (Sglext_isnotzero_mantissap2(resultp2)) { | ||
|  | 		inexact = TRUE; | ||
|  | 		switch(Rounding_mode()) { | ||
|  | 		case ROUNDNEAREST: /* The default. */ | ||
|  | 			if (Sglext_isone_highp2(resultp2)) { | ||
|  | 				/* at least 1/2 ulp */ | ||
|  | 				if (Sglext_isnotzero_low31p2(resultp2) || | ||
|  | 				    Sglext_isone_lowp1(resultp1)) { | ||
|  | 					/* either exactly half way and odd or
 | ||
|  | 					 * more than 1/2ulp */ | ||
|  | 					Sgl_increment(resultp1); | ||
|  | 				} | ||
|  | 			} | ||
|  | 	    		break; | ||
|  | 
 | ||
|  | 		case ROUNDPLUS: | ||
|  | 	    		if (Sgl_iszero_sign(resultp1)) { | ||
|  | 				/* Round up positive results */ | ||
|  | 				Sgl_increment(resultp1); | ||
|  | 			} | ||
|  | 			break; | ||
|  | 	     | ||
|  | 		case ROUNDMINUS: | ||
|  | 	    		if (Sgl_isone_sign(resultp1)) { | ||
|  | 				/* Round down negative results */ | ||
|  | 				Sgl_increment(resultp1); | ||
|  | 			} | ||
|  | 	     | ||
|  | 		case ROUNDZERO:; | ||
|  | 			/* truncate is simple */ | ||
|  | 		} /* end switch... */ | ||
|  | 		if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; | ||
|  | 	} | ||
|  | 	if (result_exponent >= SGL_INFINITY_EXPONENT) { | ||
|  | 		/* Overflow */ | ||
|  | 		if (Is_overflowtrap_enabled()) { | ||
|  |                         /*
 | ||
|  |                          * Adjust bias of result | ||
|  |                          */ | ||
|  |                         Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); | ||
|  |                         Sgl_copytoptr(resultp1,dstptr); | ||
|  |                         if (inexact) | ||
|  |                             if (Is_inexacttrap_enabled()) | ||
|  |                                 return (OPC_2E_OVERFLOWEXCEPTION | | ||
|  | 					OPC_2E_INEXACTEXCEPTION); | ||
|  |                             else Set_inexactflag(); | ||
|  |                         return (OPC_2E_OVERFLOWEXCEPTION); | ||
|  | 		} | ||
|  | 		inexact = TRUE; | ||
|  | 		Set_overflowflag(); | ||
|  | 		Sgl_setoverflow(resultp1); | ||
|  | 	} else if (result_exponent <= 0) {	/* underflow case */ | ||
|  | 		if (Is_underflowtrap_enabled()) { | ||
|  |                         /*
 | ||
|  |                          * Adjust bias of result | ||
|  |                          */ | ||
|  |                 	Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); | ||
|  | 			Sgl_copytoptr(resultp1,dstptr); | ||
|  |                         if (inexact) | ||
|  |                             if (Is_inexacttrap_enabled()) | ||
|  |                                 return (OPC_2E_UNDERFLOWEXCEPTION | | ||
|  | 					OPC_2E_INEXACTEXCEPTION); | ||
|  |                             else Set_inexactflag(); | ||
|  | 	    		return(OPC_2E_UNDERFLOWEXCEPTION); | ||
|  | 		} | ||
|  | 		else if (inexact && is_tiny) Set_underflowflag(); | ||
|  | 	} | ||
|  | 	else Sgl_set_exponent(resultp1,result_exponent); | ||
|  | 	Sgl_copytoptr(resultp1,dstptr); | ||
|  | 	if (inexact)  | ||
|  | 		if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); | ||
|  | 		else Set_inexactflag(); | ||
|  |     	return(NOEXCEPTION); | ||
|  | } | ||
|  | 
 |