/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include #include #include "tcpm.h" #include "usb_pd.h" #include #ifdef CONFIG_COMMON_RUNTIME #define CPRINTS(format, args...) cprints(CC_USBPD, format, ## args) #define CPRINTF(format, args...) cprintf(CC_USBPD, format, ## args) #else #define CPRINTS(format, args...) printf(format, ## args) #define CPRINTF(format, args...) printf(format, ## args) #endif static int rw_flash_changed = 1; int pd_check_requested_voltage(uint32_t rdo, const int port) { int max_ma = rdo & 0x3FF; int op_ma = (rdo >> 10) & 0x3FF; int idx = RDO_POS(rdo); uint32_t pdo; uint32_t pdo_ma; #if defined(CONFIG_USB_PD_DYNAMIC_SRC_CAP) || \ defined(CONFIG_USB_PD_MAX_SINGLE_SOURCE_CURRENT) const uint32_t *src_pdo; const int pdo_cnt = charge_manager_get_source_pdo(&src_pdo, port); #else const uint32_t *src_pdo = pd_src_pdo; const int pdo_cnt = pd_src_pdo_cnt; #endif /* Board specific check for this request */ if (pd_board_check_request(rdo, pdo_cnt)) return EC_ERROR_INVAL; /* check current ... */ pdo = src_pdo[idx - 1]; pdo_ma = (pdo & 0x3ff); if (op_ma > pdo_ma) return EC_ERROR_INVAL; /* too much op current */ if (max_ma > pdo_ma && !(rdo & RDO_CAP_MISMATCH)) return EC_ERROR_INVAL; /* too much max current */ CPRINTF("Requested %d V %d mA (for %d/%d mA)\n", ((pdo >> 10) & 0x3ff) * 50, (pdo & 0x3ff) * 10, op_ma * 10, max_ma * 10); /* Accept the requested voltage */ return EC_SUCCESS; } static int stub_pd_board_check_request(uint32_t rdo, int pdo_cnt) { int idx = RDO_POS(rdo); /* Check for invalid index */ return (!idx || idx > pdo_cnt) ? EC_ERROR_INVAL : EC_SUCCESS; } int pd_board_check_request(uint32_t, int) __attribute__((weak, alias("stub_pd_board_check_request"))); #ifdef CONFIG_USB_PD_DUAL_ROLE /* Last received source cap */ static uint32_t pd_src_caps[CONFIG_USB_PD_PORT_COUNT][PDO_MAX_OBJECTS]; static uint8_t pd_src_cap_cnt[CONFIG_USB_PD_PORT_COUNT]; /* Cap on the max voltage requested as a sink (in millivolts) */ static unsigned max_request_mv = PD_MAX_VOLTAGE_MV; /* no cap */ int pd_find_pdo_index(int port, int max_mv, uint32_t *selected_pdo) { int i, uw, mv, ma; int ret = 0; int __attribute__((unused)) cur_mv = 0; int cur_uw = 0; int prefer_cur; const uint32_t *src_caps = pd_src_caps[port]; /* max voltage is always limited by this boards max request */ max_mv = MIN(max_mv, PD_MAX_VOLTAGE_MV); /* Get max power that is under our max voltage input */ for (i = 0; i < pd_src_cap_cnt[port]; i++) { /* its an unsupported Augmented PDO (PD3.0) */ if ((src_caps[i] & PDO_TYPE_MASK) == PDO_TYPE_AUGMENTED) continue; mv = ((src_caps[i] >> 10) & 0x3FF) * 50; /* Skip invalid voltage */ if (!mv) continue; /* Skip any voltage not supported by this board */ if (!pd_is_valid_input_voltage(mv)) continue; if ((src_caps[i] & PDO_TYPE_MASK) == PDO_TYPE_BATTERY) { uw = 250000 * (src_caps[i] & 0x3FF); } else { ma = (src_caps[i] & 0x3FF) * 10; ma = MIN(ma, PD_MAX_CURRENT_MA); uw = ma * mv; } if (mv > max_mv) continue; uw = MIN(uw, PD_MAX_POWER_MW * 1000); prefer_cur = 0; /* Apply special rules in case of 'tie' */ #ifdef PD_PREFER_LOW_VOLTAGE if (uw == cur_uw && mv < cur_mv) prefer_cur = 1; #elif defined(PD_PREFER_HIGH_VOLTAGE) if (uw == cur_uw && mv > cur_mv) prefer_cur = 1; #endif /* Prefer higher power, except for tiebreaker */ if (uw > cur_uw || prefer_cur) { ret = i; cur_uw = uw; cur_mv = mv; } } if (selected_pdo) *selected_pdo = src_caps[ret]; return ret; } void pd_extract_pdo_power(uint32_t pdo, uint32_t *ma, uint32_t *mv) { int max_ma, uw; *mv = ((pdo >> 10) & 0x3FF) * 50; if (*mv == 0) { CPRINTF("ERR:PDO mv=0\n"); *ma = 0; return; } if ((pdo & PDO_TYPE_MASK) == PDO_TYPE_BATTERY) { uw = 250000 * (pdo & 0x3FF); max_ma = 1000 * MIN(1000 * uw, PD_MAX_POWER_MW) / *mv; } else { max_ma = 10 * (pdo & 0x3FF); max_ma = MIN(max_ma, PD_MAX_POWER_MW * 1000 / *mv); } *ma = MIN(max_ma, PD_MAX_CURRENT_MA); } int pd_build_request(int port, uint32_t *rdo, uint32_t *ma, uint32_t *mv, enum pd_request_type req_type) { uint32_t pdo; int pdo_index, flags = 0; int uw; int max_or_min_ma; int max_or_min_mw; if (req_type == PD_REQUEST_VSAFE5V) { /* src cap 0 should be vSafe5V */ pdo_index = 0; pdo = pd_src_caps[port][0]; } else { /* find pdo index for max voltage we can request */ pdo_index = pd_find_pdo_index(port, max_request_mv, &pdo); } pd_extract_pdo_power(pdo, ma, mv); uw = *ma * *mv; /* Mismatch bit set if less power offered than the operating power */ if (uw < (1000 * PD_OPERATING_POWER_MW)) flags |= RDO_CAP_MISMATCH; #ifdef CONFIG_USB_PD_GIVE_BACK /* Tell source we are give back capable. */ flags |= RDO_GIVE_BACK; /* * BATTERY PDO: Inform the source that the sink will reduce * power to this minimum level on receipt of a GotoMin Request. */ max_or_min_mw = PD_MIN_POWER_MW; /* * FIXED or VARIABLE PDO: Inform the source that the sink will reduce * current to this minimum level on receipt of a GotoMin Request. */ max_or_min_ma = PD_MIN_CURRENT_MA; #else /* * Can't give back, so set maximum current and power to operating * level. */ max_or_min_ma = *ma; max_or_min_mw = uw / 1000; #endif if ((pdo & PDO_TYPE_MASK) == PDO_TYPE_BATTERY) { int mw = uw / 1000; *rdo = RDO_BATT(pdo_index + 1, mw, max_or_min_mw, flags); } else { *rdo = RDO_FIXED(pdo_index + 1, *ma, max_or_min_ma, flags); } return EC_SUCCESS; } void pd_process_source_cap(int port, int cnt, uint32_t *src_caps) { #ifdef CONFIG_CHARGE_MANAGER uint32_t ma, mv, pdo; #endif int i; pd_src_cap_cnt[port] = cnt; for (i = 0; i < cnt; i++) pd_src_caps[port][i] = *src_caps++; #ifdef CONFIG_CHARGE_MANAGER /* Get max power info that we could request */ pd_find_pdo_index(port, PD_MAX_VOLTAGE_MV, &pdo); pd_extract_pdo_power(pdo, &ma, &mv); /* Set max. limit, but apply 500mA ceiling */ //charge_manager_set_ceil(port, CEIL_REQUESTOR_PD, PD_MIN_MA); pd_set_input_current_limit(port, ma, mv); #endif } #pragma weak pd_process_source_cap_callback void pd_process_source_cap_callback(int port, int cnt, uint32_t *src_caps) {} void pd_set_max_voltage(unsigned mv) { max_request_mv = mv; } unsigned pd_get_max_voltage(void) { return max_request_mv; } int pd_charge_from_device(uint16_t vid, uint16_t pid) { /* TODO: rewrite into table if we get more of these */ /* * White-list Apple charge-through accessory since it doesn't set * externally powered bit, but we still need to charge from it when * we are a sink. */ return (vid == USB_VID_APPLE && (pid == 0x1012 || pid == 0x1013)); } #endif /* CONFIG_USB_PD_DUAL_ROLE */ #ifdef CONFIG_USB_PD_ALT_MODE #ifdef CONFIG_USB_PD_ALT_MODE_DFP static struct pd_policy pe[CONFIG_USB_PD_PORT_COUNT]; void pd_dfp_pe_init(int port) { memset(&pe[port], 0, sizeof(struct pd_policy)); } static void dfp_consume_identity(int port, int cnt, uint32_t *payload) { int ptype = PD_IDH_PTYPE(payload[VDO_I(IDH)]); size_t identity_size = MIN(sizeof(pe[port].identity), (cnt - 1) * sizeof(uint32_t)); pd_dfp_pe_init(port); memcpy(&pe[port].identity, payload + 1, identity_size); switch (ptype) { case IDH_PTYPE_AMA: /* TODO(tbroch) do I disable VBUS here if power contract * requested it */ if (!PD_VDO_AMA_VBUS_REQ(payload[VDO_I(AMA)])) pd_power_supply_reset(port); #if defined(CONFIG_USB_PD_DUAL_ROLE) && defined(CONFIG_USBC_VCONN_SWAP) /* Adapter is requesting vconn, try to supply it */ if (PD_VDO_AMA_VCONN_REQ(payload[VDO_I(AMA)])) pd_try_vconn_src(port); #endif break; default: break; } } static int dfp_discover_svids(int port, uint32_t *payload) { payload[0] = VDO(USB_SID_PD, 1, CMD_DISCOVER_SVID); return 1; } static void dfp_consume_svids(int port, uint32_t *payload) { int i; uint32_t *ptr = payload + 1; uint16_t svid0, svid1; for (i = pe[port].svid_cnt; i < pe[port].svid_cnt + 12; i += 2) { if (i == SVID_DISCOVERY_MAX) { CPRINTF("ERR:SVIDCNT\n"); break; } svid0 = PD_VDO_SVID_SVID0(*ptr); if (!svid0) break; pe[port].svids[i].svid = svid0; pe[port].svid_cnt++; svid1 = PD_VDO_SVID_SVID1(*ptr); if (!svid1) break; pe[port].svids[i + 1].svid = svid1; pe[port].svid_cnt++; ptr++; } /* TODO(tbroch) need to re-issue discover svids if > 12 */ if (i && ((i % 12) == 0)) CPRINTF("ERR:SVID+12\n"); } static int dfp_discover_modes(int port, uint32_t *payload) { uint16_t svid = pe[port].svids[pe[port].svid_idx].svid; if (pe[port].svid_idx >= pe[port].svid_cnt) return 0; payload[0] = VDO(svid, 1, CMD_DISCOVER_MODES); return 1; } static void dfp_consume_modes(int port, int cnt, uint32_t *payload) { int idx = pe[port].svid_idx; pe[port].svids[idx].mode_cnt = cnt - 1; if (pe[port].svids[idx].mode_cnt < 0) { CPRINTF("ERR:NOMODE\n"); } else { memcpy(pe[port].svids[pe[port].svid_idx].mode_vdo, &payload[1], sizeof(uint32_t) * pe[port].svids[idx].mode_cnt); } pe[port].svid_idx++; } static int get_mode_idx(int port, uint16_t svid) { int i; for (i = 0; i < PD_AMODE_COUNT; i++) { if (pe[port].amodes[i].fx->svid == svid) return i; } return -1; } static struct svdm_amode_data *get_modep(int port, uint16_t svid) { int idx = get_mode_idx(port, svid); return (idx == -1) ? NULL : &pe[port].amodes[idx]; } int pd_alt_mode(int port, uint16_t svid) { struct svdm_amode_data *modep = get_modep(port, svid); return (modep) ? modep->opos : -1; } int allocate_mode(int port, uint16_t svid) { int i, j; struct svdm_amode_data *modep; int mode_idx = get_mode_idx(port, svid); if (mode_idx != -1) return mode_idx; /* There's no space to enter another mode */ if (pe[port].amode_idx == PD_AMODE_COUNT) { CPRINTF("ERR:NO AMODE SPACE\n"); return -1; } /* Allocate ... if SVID == 0 enter default supported policy */ for (i = 0; i < supported_modes_cnt; i++) { if (!&supported_modes[i]) continue; for (j = 0; j < pe[port].svid_cnt; j++) { struct svdm_svid_data *svidp = &pe[port].svids[j]; if ((svidp->svid != supported_modes[i].svid) || (svid && (svidp->svid != svid))) continue; modep = &pe[port].amodes[pe[port].amode_idx]; modep->fx = &supported_modes[i]; modep->data = &pe[port].svids[j]; pe[port].amode_idx++; return pe[port].amode_idx - 1; } } return -1; } /* * Enter default mode ( payload[0] == 0 ) or attempt to enter mode via svid & * opos */ uint32_t pd_dfp_enter_mode(int port, uint16_t svid, int opos) { int mode_idx = allocate_mode(port, svid); struct svdm_amode_data *modep; uint32_t mode_caps; if (mode_idx == -1) return 0; modep = &pe[port].amodes[mode_idx]; if (!opos) { /* choose the lowest as default */ modep->opos = 1; } else if (opos <= modep->data->mode_cnt) { modep->opos = opos; } else { CPRINTF("opos error\n"); return 0; } mode_caps = modep->data->mode_vdo[modep->opos - 1]; if (modep->fx->enter(port, mode_caps) == -1) return 0; /* SVDM to send to UFP for mode entry */ return VDO(modep->fx->svid, 1, CMD_ENTER_MODE | VDO_OPOS(modep->opos)); } static int validate_mode_request(struct svdm_amode_data *modep, uint16_t svid, int opos) { if (!modep->fx) return 0; if (svid != modep->fx->svid) { CPRINTF("ERR:svid r:0x%04x != c:0x%04x\n", svid, modep->fx->svid); return 0; } if (opos != modep->opos) { CPRINTF("ERR:opos r:%d != c:%d\n", opos, modep->opos); return 0; } return 1; } static void dfp_consume_attention(int port, uint32_t *payload) { uint16_t svid = PD_VDO_VID(payload[0]); int opos = PD_VDO_OPOS(payload[0]); struct svdm_amode_data *modep = get_modep(port, svid); if (!modep || !validate_mode_request(modep, svid, opos)) return; if (modep->fx->attention) modep->fx->attention(port, payload); } /* * This algorithm defaults to choosing higher pin config over lower ones in * order to prefer multi-function if desired. * * NAME | SIGNALING | OUTPUT TYPE | MULTI-FUNCTION | PIN CONFIG * ------------------------------------------------------------- * A | USB G2 | ? | no | 00_0001 * B | USB G2 | ? | yes | 00_0010 * C | DP | CONVERTED | no | 00_0100 * D | PD | CONVERTED | yes | 00_1000 * E | DP | DP | no | 01_0000 * F | PD | DP | yes | 10_0000 * * if UFP has NOT asserted multi-function preferred code masks away B/D/F * leaving only A/C/E. For single-output dongles that should leave only one * possible pin config depending on whether its a converter DP->(VGA|HDMI) or DP * output. If UFP is a USB-C receptacle it may assert C/D/E/F. The DFP USB-C * receptacle must always choose C/D in those cases. */ int pd_dfp_dp_get_pin_mode(int port, uint32_t status) { struct svdm_amode_data *modep = get_modep(port, USB_SID_DISPLAYPORT); uint32_t mode_caps; uint32_t pin_caps; if (!modep) return 0; mode_caps = modep->data->mode_vdo[modep->opos - 1]; /* TODO(crosbug.com/p/39656) revisit with DFP that can be a sink */ pin_caps = PD_DP_PIN_CAPS(mode_caps); /* if don't want multi-function then ignore those pin configs */ if (!PD_VDO_DPSTS_MF_PREF(status)) pin_caps &= ~MODE_DP_PIN_MF_MASK; /* TODO(crosbug.com/p/39656) revisit if DFP drives USB Gen 2 signals */ pin_caps &= ~MODE_DP_PIN_BR2_MASK; /* if C/D present they have precedence over E/F for USB-C->USB-C */ if (pin_caps & (MODE_DP_PIN_C | MODE_DP_PIN_D)) pin_caps &= ~(MODE_DP_PIN_E | MODE_DP_PIN_F); /* get_next_bit returns undefined for zero */ if (!pin_caps) return 0; return 1 << get_next_bit(&pin_caps); } int pd_dfp_exit_mode(int port, uint16_t svid, int opos) { struct svdm_amode_data *modep; int idx; /* * Empty svid signals we should reset DFP VDM state by exiting all * entered modes then clearing state. This occurs when we've * disconnected or for hard reset. */ if (!svid) { for (idx = 0; idx < PD_AMODE_COUNT; idx++) if (pe[port].amodes[idx].fx) pe[port].amodes[idx].fx->exit(port); pd_dfp_pe_init(port); return 0; } /* * TODO(crosbug.com/p/33946) : below needs revisited to allow multiple * mode exit. Additionally it should honor OPOS == 7 as DFP's request * to exit all modes. We currently don't have any UFPs that support * multiple modes on one SVID. */ modep = get_modep(port, svid); if (!modep || !validate_mode_request(modep, svid, opos)) return 0; /* call DFPs exit function */ modep->fx->exit(port); /* exit the mode */ modep->opos = 0; return 1; } uint16_t pd_get_identity_vid(int port) { return PD_IDH_VID(pe[port].identity[0]); } uint16_t pd_get_identity_pid(int port) { return PD_PRODUCT_PID(pe[port].identity[2]); } #ifdef CONFIG_CMD_USB_PD_PE static void dump_pe(int port) { const char * const idh_ptype_names[] = { "UNDEF", "Hub", "Periph", "PCable", "ACable", "AMA", "RSV6", "RSV7"}; int i, j, idh_ptype; struct svdm_amode_data *modep; uint32_t mode_caps; if (pe[port].identity[0] == 0) { ccprintf("No identity discovered yet.\n"); return; } idh_ptype = PD_IDH_PTYPE(pe[port].identity[0]); ccprintf("IDENT:\n"); ccprintf("\t[ID Header] %08x :: %s, VID:%04x\n", pe[port].identity[0], idh_ptype_names[idh_ptype], pd_get_identity_vid(port)); ccprintf("\t[Cert Stat] %08x\n", pe[port].identity[1]); for (i = 2; i < ARRAY_SIZE(pe[port].identity); i++) { ccprintf("\t"); if (pe[port].identity[i]) ccprintf("[%d] %08x ", i, pe[port].identity[i]); } ccprintf("\n"); if (pe[port].svid_cnt < 1) { ccprintf("No SVIDS discovered yet.\n"); return; } for (i = 0; i < pe[port].svid_cnt; i++) { ccprintf("SVID[%d]: %04x MODES:", i, pe[port].svids[i].svid); for (j = 0; j < pe[port].svids[j].mode_cnt; j++) ccprintf(" [%d] %08x", j + 1, pe[port].svids[i].mode_vdo[j]); ccprintf("\n"); modep = get_modep(port, pe[port].svids[i].svid); if (modep) { mode_caps = modep->data->mode_vdo[modep->opos - 1]; ccprintf("MODE[%d]: svid:%04x caps:%08x\n", modep->opos, modep->fx->svid, mode_caps); } } } static int command_pe(int argc, char **argv) { int port; char *e; if (argc < 3) return EC_ERROR_PARAM_COUNT; /* command: pe */ port = strtoi(argv[1], &e, 10); if (*e || port >= CONFIG_USB_PD_PORT_COUNT) return EC_ERROR_PARAM2; if (!strncasecmp(argv[2], "dump", 4)) dump_pe(port); return EC_SUCCESS; } DECLARE_CONSOLE_COMMAND(pe, command_pe, " dump", "USB PE"); #endif /* CONFIG_CMD_USB_PD_PE */ #endif /* CONFIG_USB_PD_ALT_MODE_DFP */ int pd_svdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload) { int cmd = PD_VDO_CMD(payload[0]); int cmd_type = PD_VDO_CMDT(payload[0]); int (*func)(int port, uint32_t *payload) = NULL; int rsize = 1; /* VDM header at a minimum */ payload[0] &= ~VDO_CMDT_MASK; *rpayload = payload; if (cmd_type == CMDT_INIT) { switch (cmd) { case CMD_DISCOVER_IDENT: func = svdm_rsp.identity; break; case CMD_DISCOVER_SVID: func = svdm_rsp.svids; break; case CMD_DISCOVER_MODES: func = svdm_rsp.modes; break; case CMD_ENTER_MODE: func = svdm_rsp.enter_mode; break; case CMD_DP_STATUS: func = svdm_rsp.amode->status; break; case CMD_DP_CONFIG: func = svdm_rsp.amode->config; break; case CMD_EXIT_MODE: func = svdm_rsp.exit_mode; break; #ifdef CONFIG_USB_PD_ALT_MODE_DFP case CMD_ATTENTION: /* * attention is only SVDM with no response * (just goodCRC) return zero here. */ dfp_consume_attention(port, payload); return 0; #endif default: CPRINTF("ERR:CMD:%d\n", cmd); rsize = 0; } if (func) rsize = func(port, payload); else /* not supported : NACK it */ rsize = 0; if (rsize >= 1) payload[0] |= VDO_CMDT(CMDT_RSP_ACK); else if (!rsize) { payload[0] |= VDO_CMDT(CMDT_RSP_NAK); rsize = 1; } else { payload[0] |= VDO_CMDT(CMDT_RSP_BUSY); rsize = 1; } payload[0] |= VDO_SVDM_VERS(pd_get_vdo_ver(port)); } else if (cmd_type == CMDT_RSP_ACK) { #ifdef CONFIG_USB_PD_ALT_MODE_DFP struct svdm_amode_data *modep; modep = get_modep(port, PD_VDO_VID(payload[0])); #endif switch (cmd) { #ifdef CONFIG_USB_PD_ALT_MODE_DFP case CMD_DISCOVER_IDENT: dfp_consume_identity(port, cnt, payload); rsize = dfp_discover_svids(port, payload); #ifdef CONFIG_CHARGE_MANAGER if (pd_charge_from_device(pd_get_identity_vid(port), pd_get_identity_pid(port))) charge_manager_update_dualrole(port, CAP_DEDICATED); #endif break; case CMD_DISCOVER_SVID: dfp_consume_svids(port, payload); rsize = dfp_discover_modes(port, payload); break; case CMD_DISCOVER_MODES: dfp_consume_modes(port, cnt, payload); rsize = dfp_discover_modes(port, payload); /* enter the default mode for DFP */ if (!rsize) { payload[0] = pd_dfp_enter_mode(port, 0, 0); if (payload[0]) rsize = 1; } break; case CMD_ENTER_MODE: if (!modep) { rsize = 0; } else { if (!modep->opos) pd_dfp_enter_mode(port, 0, 0); if (modep->opos) { rsize = modep->fx->status(port, payload); payload[0] |= PD_VDO_OPOS(modep->opos); } } break; case CMD_DP_STATUS: /* DP status response & UFP's DP attention have same payload */ dfp_consume_attention(port, payload); if (modep && modep->opos) rsize = modep->fx->config(port, payload); else rsize = 0; break; case CMD_DP_CONFIG: if (modep && modep->opos && modep->fx->post_config) modep->fx->post_config(port); /* no response after DFPs ack */ rsize = 0; break; case CMD_EXIT_MODE: /* no response after DFPs ack */ rsize = 0; break; #endif case CMD_ATTENTION: /* no response after DFPs ack */ rsize = 0; break; default: CPRINTF("ERR:CMD:%d\n", cmd); rsize = 0; } payload[0] |= VDO_CMDT(CMDT_INIT); payload[0] |= VDO_SVDM_VERS(pd_get_vdo_ver(port)); #ifdef CONFIG_USB_PD_ALT_MODE_DFP } else if (cmd_type == CMDT_RSP_BUSY) { switch (cmd) { case CMD_DISCOVER_IDENT: case CMD_DISCOVER_SVID: case CMD_DISCOVER_MODES: /* resend if its discovery */ rsize = 1; break; case CMD_ENTER_MODE: /* Error */ CPRINTF("ERR:ENTBUSY\n"); rsize = 0; break; case CMD_EXIT_MODE: rsize = 0; break; default: rsize = 0; } } else if (cmd_type == CMDT_RSP_NAK) { /* nothing to do */ rsize = 0; #endif /* CONFIG_USB_PD_ALT_MODE_DFP */ } else { CPRINTF("ERR:CMDT:%d\n", cmd); /* do not answer */ rsize = 0; } return rsize; } #else int pd_svdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload) { return 0; } #endif /* CONFIG_USB_PD_ALT_MODE */ #ifndef CONFIG_USB_PD_CUSTOM_VDM int pd_vdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload) { return 0; } #endif /* !CONFIG_USB_PD_CUSTOM_VDM */ static void pd_usb_billboard_deferred(void) { #if defined(CONFIG_USB_PD_ALT_MODE) && !defined(CONFIG_USB_PD_ALT_MODE_DFP) \ && !defined(CONFIG_USB_PD_SIMPLE_DFP) && defined(CONFIG_USB_BOS) /* * TODO(tbroch) * 1. Will we have multiple type-C port UFPs * 2. Will there be other modes applicable to DFPs besides DP */ if (!pd_alt_mode(0, USB_SID_DISPLAYPORT)) usb_connect(); #endif } DECLARE_DEFERRED(pd_usb_billboard_deferred); #ifdef CONFIG_USB_PD_ALT_MODE_DFP static int hc_remote_pd_discovery(struct host_cmd_handler_args *args) { const uint8_t *port = args->params; struct ec_params_usb_pd_discovery_entry *r = args->response; if (*port >= CONFIG_USB_PD_PORT_COUNT) return EC_RES_INVALID_PARAM; r->vid = pd_get_identity_vid(*port); r->ptype = PD_IDH_PTYPE(pe[*port].identity[0]); /* pid only included if vid is assigned */ if (r->vid) r->pid = PD_PRODUCT_PID(pe[*port].identity[2]); args->response_size = sizeof(*r); return EC_RES_SUCCESS; } DECLARE_HOST_COMMAND(EC_CMD_USB_PD_DISCOVERY, hc_remote_pd_discovery, EC_VER_MASK(0)); static int hc_remote_pd_get_amode(struct host_cmd_handler_args *args) { struct svdm_amode_data *modep; const struct ec_params_usb_pd_get_mode_request *p = args->params; struct ec_params_usb_pd_get_mode_response *r = args->response; if (p->port >= CONFIG_USB_PD_PORT_COUNT) return EC_RES_INVALID_PARAM; /* no more to send */ if (p->svid_idx >= pe[p->port].svid_cnt) { r->svid = 0; args->response_size = sizeof(r->svid); return EC_RES_SUCCESS; } r->svid = pe[p->port].svids[p->svid_idx].svid; r->opos = 0; memcpy(r->vdo, pe[p->port].svids[p->svid_idx].mode_vdo, 24); modep = get_modep(p->port, r->svid); if (modep) r->opos = pd_alt_mode(p->port, r->svid); args->response_size = sizeof(*r); return EC_RES_SUCCESS; } DECLARE_HOST_COMMAND(EC_CMD_USB_PD_GET_AMODE, hc_remote_pd_get_amode, EC_VER_MASK(0)); #endif #define FW_RW_END (CONFIG_EC_WRITABLE_STORAGE_OFF + \ CONFIG_RW_STORAGE_OFF + CONFIG_RW_SIZE) /* uint8_t *flash_hash_rw(void) { static struct sha256_ctx ctx; // re-calculate RW hash when changed as its time consuming if (rw_flash_changed) { rw_flash_changed = 0; SHA256_init(&ctx); SHA256_update(&ctx, (void *)CONFIG_PROGRAM_MEMORY_BASE + CONFIG_RW_MEM_OFF, CONFIG_RW_SIZE - RSANUMBYTES); return SHA256_final(&ctx); } else { return ctx.buf; } } void pd_get_info(uint32_t *info_data) { void *rw_hash = flash_hash_rw(); // copy first 20 bytes of RW hash memcpy(info_data, rw_hash, 5 * sizeof(uint32_t)); // copy other info into data msg #if defined(CONFIG_USB_PD_HW_DEV_ID_BOARD_MAJOR) && \ defined(CONFIG_USB_PD_HW_DEV_ID_BOARD_MINOR) info_data[5] = VDO_INFO(CONFIG_USB_PD_HW_DEV_ID_BOARD_MAJOR, CONFIG_USB_PD_HW_DEV_ID_BOARD_MINOR, ver_get_numcommits(), (system_get_image_copy() != SYSTEM_IMAGE_RO)); #else info_data[5] = 0; #endif } int pd_custom_flash_vdm(int port, int cnt, uint32_t *payload) { static int flash_offset; int rsize = 1; // default is just VDM header returned switch (PD_VDO_CMD(payload[0])) { case VDO_CMD_VERSION: memcpy(payload + 1, ¤t_image_data.version, 24); rsize = 7; break; case VDO_CMD_REBOOT: // ensure the power supply is in a safe state pd_power_supply_reset(0); system_reset(0); break; case VDO_CMD_READ_INFO: // copy info into response pd_get_info(payload + 1); rsize = 7; break; case VDO_CMD_FLASH_ERASE: // do not kill the code under our feet if (system_get_image_copy() != SYSTEM_IMAGE_RO) break; pd_log_event(PD_EVENT_ACC_RW_ERASE, 0, 0, NULL); flash_offset = CONFIG_EC_WRITABLE_STORAGE_OFF + CONFIG_RW_STORAGE_OFF; flash_physical_erase(CONFIG_EC_WRITABLE_STORAGE_OFF + CONFIG_RW_STORAGE_OFF, CONFIG_RW_SIZE); rw_flash_changed = 1; break; case VDO_CMD_FLASH_WRITE: // do not kill the code under our feet if ((system_get_image_copy() != SYSTEM_IMAGE_RO) || (flash_offset < CONFIG_EC_WRITABLE_STORAGE_OFF + CONFIG_RW_STORAGE_OFF)) break; flash_physical_write(flash_offset, 4*(cnt - 1), (const char *)(payload+1)); flash_offset += 4*(cnt - 1); rw_flash_changed = 1; break; case VDO_CMD_ERASE_SIG: // this is not touching the code area { uint32_t zero = 0; int offset; // zeroes the area containing the RSA signature for (offset = FW_RW_END - RSANUMBYTES; offset < FW_RW_END; offset += 4) flash_physical_write(offset, 4, (const char *)&zero); } break; default: // Unknown : do not answer return 0; } return rsize; } */ #ifdef CONFIG_USB_PD_DISCHARGE void pd_set_vbus_discharge(int port, int enable) { static struct mutex discharge_lock[CONFIG_USB_PD_PORT_COUNT]; mutex_lock(&discharge_lock[port]); enable &= !board_vbus_source_enabled(port); #ifdef CONFIG_USB_PD_DISCHARGE_GPIO if (!port) gpio_set_level(GPIO_USB_C0_DISCHARGE, enable); #if CONFIG_USB_PD_PORT_COUNT > 1 else gpio_set_level(GPIO_USB_C1_DISCHARGE, enable); #endif /* CONFIG_USB_PD_PORT_COUNT */ #elif defined(CONFIG_USB_PD_DISCHARGE_TCPC) tcpc_discharge_vbus(port, enable); #else #error "PD discharge implementation not defined" #endif mutex_unlock(&discharge_lock[port]); } #endif /* CONFIG_USB_PD_DISCHARGE */ /* Whether alternate mode has been entered or not */ static int alt_mode = 0; int dp_enabled = 0; /* ----------------- Vendor Defined Messages ------------------ */ const uint32_t vdo_idh = VDO_IDH(0, /* data caps as USB host */ 0, /* data caps as USB device */ IDH_PTYPE_AMA, /* Alternate mode */ 1, /* supports alt modes */ USB_VID_GOOGLE); const uint32_t vdo_product = VDO_PRODUCT(CONFIG_USB_PID, CONFIG_USB_BCD_DEV); const uint32_t vdo_ama = VDO_AMA(CONFIG_USB_PD_IDENTITY_HW_VERS, CONFIG_USB_PD_IDENTITY_SW_VERS, 0, 0, 0, 0, /* SS[TR][12] */ 0, /* Vconn power */ 0, /* Vconn power required */ 1, /* Vbus power required */ AMA_USBSS_BBONLY /* USB SS support */); static int svdm_response_identity(int port, uint32_t *payload) { payload[VDO_I(IDH)] = vdo_idh; payload[VDO_I(CSTAT)] = VDO_CSTAT(0); payload[VDO_I(PRODUCT)] = vdo_product; payload[VDO_I(AMA)] = vdo_ama; return VDO_I(AMA) + 1; } static int svdm_response_svids(int port, uint32_t *payload) { payload[1] = VDO_SVID(USB_SID_DISPLAYPORT, 0); return 2; } #define MODE_CNT 1 #define OPOS 1 static int dp_status(int port, uint32_t *payload) { CPRINTF("DP status %08x\n", payload[0]); int opos = PD_VDO_OPOS(payload[0]); int hpd = dp_enabled; //? if (opos != OPOS) return 0; /* nak */ payload[1] = VDO_DP_STATUS(0, /* IRQ_HPD */ (hpd == 1), /* HPD_HI|LOW */ 0, /* request exit DP */ 0, /* request exit USB */ 0, /* MF pref */ dp_enabled, /* enabled */ 0, /* power low */ 0x2); return 2; } static int dp_config(int port, uint32_t *payload) { CPRINTF("DP config %08x\n", payload[1]); if (PD_DP_CFG_DPON(payload[1])) { dp_enabled = 1; } return 1; } const uint32_t vdo_dp_mode[MODE_CNT] = { VDO_MODE_DP(0, /* UFP pin cfg supported : none */ MODE_DP_PIN_C | MODE_DP_PIN_D | MODE_DP_PIN_E | MODE_DP_PIN_F, /* DFP pin cfg supported */ 1, /* no usb2.0 signalling in AMode */ CABLE_PLUG, /* its a plug */ MODE_DP_V13, /* DPv1.3 Support, no Gen2 */ MODE_DP_SNK) /* Its a sink only */ }; static int svdm_response_modes(int port, uint32_t *payload) { if (PD_VDO_VID(payload[0]) != USB_SID_DISPLAYPORT) return 0; /* nak */ memcpy(payload + 1, vdo_dp_mode, sizeof(vdo_dp_mode)); return MODE_CNT + 1; } int svdm_enter_mode(int port, uint32_t *payload) { CPRINTF("SVDM enter mode\n"); /* SID & mode request is valid */ if ((PD_VDO_VID(payload[0]) != USB_SID_DISPLAYPORT) || (PD_VDO_OPOS(payload[0]) != OPOS)) return 0; /* will generate NAK */ alt_mode = OPOS; return 1; } int pd_alt_mode(int port, uint16_t svid) { return alt_mode; } static int svdm_exit_mode(int port, uint32_t *payload) { CPRINTF("SVDM exit mode\n"); alt_mode = 0; dp_enabled = 0; return 1; /* Must return ACK */ } static struct amode_fx dp_fx = { .status = &dp_status, .config = &dp_config, }; const struct svdm_response svdm_rsp = { .identity = &svdm_response_identity, .svids = &svdm_response_svids, .modes = &svdm_response_modes, .enter_mode = &svdm_enter_mode, .amode = &dp_fx, .exit_mode = &svdm_exit_mode, };